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Abstract
In his 1935 Gedankenexperiment, Erwin Schrödinger imagined a box with a cat and a
poisonous substance which has a 50% probability of being released, based on the decay of a
radioactive atom. As such, the life of the cat and the state of the poison become entangled, and
the fate of the cat is determined upon opening the box. We present an experimental technique
that keeps the cat alive on any account. This method relies on the time-resolved
Hong–Ou–Mandel effect: two long, identical photons impinging on a beam splitter always
bunch in either of the outputs. Interpreting the first photon detection as the state of the poison,
the second photon is identified as the state of the cat. Even after the collapse of the first
photon’s state, we show their fates are intertwined through quantum interference. We
demonstrate this by a sudden phase change between the inputs, administered conditionally on
the outcome of the first detection, which steers the second photon to a pre-defined output and
ensures that the cat is always observed alive.

Keywords: quantum feedback, Schrödinger’s cat, Hong–Ou–Mandel, single photon sources,
cavity QED, atomic fountain
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(Some figures may appear in colour only in the online journal)

1. Introduction

One of the most intriguing principles of quantum mechanics
is that of superposition, which states that a quantum system,
before being measured, can be interpreted to be in two simul-
taneous states at once. In his 1935 Gedankenexperiment [1],
Erwin Schrödinger illustrated the paradoxical nature of super-

∗ Author to whom any correspondence should be addressed.
1 Now at Metamaterials Research Centre, University of Birmingham, Edgbas-
ton, Birmingham, B15 2TT, United Kingdom.
2 Now at InstaDeep, London, United Kingdom.
3 Now at Google.
4 Now at Robert Bosch GmbH, Postfach 13 55, 74003 Heilbronn, Germany.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

position by depicting a cat in a box whose state (dead or alive)
is entangled with a vicious device that releases a poisonous
substance upon the radioactive decay of an atom which has a
probability of 50%. Only upon opening the box for the first
time, is it possible to determine the state of the combined
system of the cat and the radioactive device; with no decay
together with an intact vile and a cat observed alive only half
of the time.

The randomness of quantum measurements introduces a
fundamental distinction with respect to classical measure-
ments. The process of measurement is central to many open
theoretical questions [2], where the measurement induces
apparent contradictions between the predictions of quantum
mechanics and the appearance of sharp measurement out-
comes [3]. In addition, many systems and applications involve
a form of quantum control that relies on the quantum nature of
measurements [4].
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This poses the question: can a partial measurement of a
quantum system be made such that it triggers a sequence of
events that coerces the remainder of the system into a desired
state? In the example of Schrödinger’s cat, observing whether
or not the poison has been released normally determines the
state of the cat. However, given enough time between poison-
ing the cat and its actual death, performing such a partial mea-
surement gives one the opportunity to administer an otherwise
deadly antidote to a poisoned cat, such that it is always found
alive. Such an approach would normally be implemented in
the form of a feedback loop, by which a device obtains infor-
mation about the trajectory of a physical system in order to
modify it in real time [5, 6].

In quantum systems, feedback can be of two types: the first,
measurement-based quantum feedback, occurs when a mea-
surement outcome defines a subsequent action on the original
system. The second, coherent quantum feedback, involves no
measurements but provides control using coherent interaction
with an auxiliary quantum system.

Both feedback types exist in a range of applications: the
generation of amplitude squeezed states in a semiconductor
laser [7], the improvement of single-shot phase measurements
in quantum metrology [8], the stabilisation of a combined
atom-cavity quantum state [9], and the preparation and stabil-
isation of Fock states in a high-Q microwave cavity with weak
measurements [10, 11].

In this work, we take advantage of a measurement-based
feedback protocol to deliver a photonic state with a desired
property: that of always exiting through the output of a beam
splitter of the experimentalist’s choosing. Specifically, the
feedback process is applied in a time-resolved two-photon
quantum interference experiment [12] in which the time span
between the first and second photon detection is long enough
(∼ 500 ns) for a phase change to be applied on the second
photon. This allows us to alternate between the behaviours of
bosonic and fermionic interference to control the routing of
a single photon as desired. The phenomenon of two-photon
quantum interference is now pervasive in various different the-
oretical and experimental settings [13–16]. In particular, the
control of the amplitude and phase evolution of the interfering
photons has been studied and proven to give rise to pronounced
photon–photon correlations in selected time-bins [17].

2. Methods

2.1. Theory

Let us consider two photons arriving simultaneously at the
input ports A and B of a beam splitter (BS), as illustrated in the
interference box of figure 1. The joint probability of detecting
two photons at times t0 and t0 + τ at detectors placed at out-
puts C and D of the BS, respectively, can be written as [12, 18]

Pjoint (t0, τ ) =
∣∣∣Ê+

D (t0 + τ ) Ê+
C (t0) â†

Aâ†
B |0A0B〉

∣∣∣2
, (1)

where â†A and â†
B correspond to the creation operators of a pho-

ton in the ports A and B (âA and âB would correspond to the

annihilation operators), Ê+
C + Ê−

C and Ê+
D + Ê−

D are the elec-
tric field operators at the output ports of the beam splitter, and
|0A0B〉 corresponds to the vacuum state on the input ports A
and B. In this context, τ can be positive or negative, and τ < 0
corresponds to the detector in port D clicking before that in
port C. We emphasise that τ is a detection time difference giv-
ing rise to a time-resolved Hong–Ou–Mandel (HOM) signal
[12, 18], and must not be confused with the photon arrival time
difference (Δt) used in many other HOM experiments [19].
Here, we are only interested in the case for which the two pho-
ton wavepackets arrive simultaneously (Δt = 0). If Δt �= 0,
parts of the photon envelope would not overlap, giving rise to
random correlations.

The electric field operators can be written as the sum
of spatio-temporal functions in distinct modes k, ζk (t) =
εk (t) exp (−iφk (t)):

Ê+(t) =
∑

k

ζk(t)âk, Ê−(t) =
∑

k

ζ∗k (t)â†k, (2)

where εk (t) corresponds to the photon amplitude in mode k and
φk (t) to its phase.

Since the absolute photon detection times are irrelevant, we
calculate the joint detection probability as a function of τ only:

Pjoint (τ ) =
∫ ∞

−∞
dt0Pjoint (t0, τ ) . (3)

Without loss of generality, we consider two linearly
polarised photons with a relative polarisation angle θ. In this
case, equation (1) can be written as [18]

Pjoint (t0, τ ) = P(HV)
joint (t0, τ ) − cos2 θ F (t0, τ ) , (4)

where

P(HV)
joint (t0, τ ) =

1
4

(
|εA (t0) εB (t0 + τ )|2

+ |εA (t0 + τ ) εB (t0)|2
)

(5)

and

F (t0, τ ) =
εA (t0) εB (t0 + τ ) εA (t0 + τ ) εB (t0)

2

× cos (φA (t0) − φA (t0 + τ )

+ φB (t0 + τ ) − φB (t0)) . (6)

When both input photons have orthogonal polarisa-
tions

(
θ = π/2

)
, Pjoint (τ ) can be written as the convolu-

tion of their spatio-temporal squared amplitudes, Pjoint (τ ) =
1
2

(
|εA|2∗|εB|2

)
(τ ), rendering the choice of φA and φB irrele-

vant. This is in sharp contrast to the case for which both input
photons have parallel polarisations (θ = 0), where φA and φB

become relevant. The expected behaviour of Pjoint (τ ) for the
particular case of two photons of perpendicular polarisation
with the temporal shape ε (t) = sin2

(
2πt/δt

)
, is shown as a

dashed curve in figure 2(a) for δt = 400 ns. The three peaks
that are shown in figure 2(a) correspond to the detection of
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Figure 1. Experimental arrangement: two long, double-hump photons interfere in a beam splitter. Photons are emitted at a repetition rate of
1 MHz from an atomic source driven by a laser pulse controlled by an acousto-optic modulator (AOM), whose phase is changed using an
electro-optic modulator (EOM). The AOM pulses are generated by an arbitrary waveform generator (AWG). A delay line with an optical
path length of 300 m ensures the simultaneous arrival of two sequentially emitted photons. The emitted photons have such long wave
packets, that the first time bin of both photons interferes before the relative phase φ of the second photon in the second time bin is set.
Furthermore, the emitted photons have random polarisations. Using a polarising beam splitter (PBS), photons are routed into random paths,
and two photons simultaneously impinge on the input ports A and B of a beam splitter (BS) in 25% of all possible cases. The relative
polarisation between both photons is changed using a half wave plate (HWP). Photons then interfere in the BS and exit through the ports C
and D, upon which measurements are performed using single photon counting modules (SPCMs). The outcome of a measurement in the first
time bin is used to perform feedback on the value of the phase, φ during the second half of the driving pulse.

Figure 2. Coincidence probability densities and sliding histograms (whose bin width is larger than its bin separation) showing the
theoretical (dashed) and experimental (solid) values for Pjoint (τ ). This illustrates the time-resolved HOM interference of two photons under
three different conditions. (a) Shows the random routing of photons with perpendicular polarisations, which serves as reference. (b) Shows
the interference between indistinguishable photons (φ = 0) with parallel polarisations, resulting in almost no coincidences between the two
detectors. Indeed, the theoretical prediction states that Pjoint(τ ) = 0. (c) Shows the trace obtained for photons with phase shifts of φ = π
without feedback. (d) Shows the asymmetric pattern observed under feedback control, where the feedback has prevented (most) correlations
in the right satellite peak, steering the second photon to a pre-defined output. This ensures that the cat is always observed alive. The data
shown here has been corrected for correlations involving background noise, as explained in the supplemental material.

coincidences in detectors C and D delayed by varying time
differences τ ∈ [−400, 400] ns.

We subdivide the overall duration of the photons into two
distinct intervals (bins) of equal length labelled I1 (early) and
I2 (late). Additionally, let us assume that, for the photon arriv-
ing through A, φA (t) = 0 for all times, and that, for the photon
arriving through B, φB (t) = 0 for t ∈ I1, and φB (t) = φ for
t ∈ I2. In the Schrödinger picture [18], the state entering the
BS is given by

|Ψin〉 =
1
2

(
â†

A1 + â†
A2

)(
â†

B1 + eiφâ†
B2

)
|0〉 . (7)

Here, â†
A j and â†

B j correspond to the photon creation opera-
tors in ports A and B in the time intervals I j, with j ∈ {1, 2},
and |0〉 is the vacuum state in the basis of all the temporal and

beam splitter input paths: |0〉 = |0A10A20B10B2〉. For the cases
φ = 0 and φ = π, the theoretical predictions of Pjoint (τ ) are
shown as dashed curves in figures 2(b) and (c). For the case of
figure 2(b), both input photons are identical and feature photon
bunching in the output detectors. For this reason, the expected
behaviour would not include any coincidences between detec-
tors C and D. In contrast, in figure 2(c) the photon entering
through port B acquired a π-phase change from I1 to I2. This
is the only difference between the two photons. Therefore, if
both photons are detected during either I1 or I2, the photons
are indistinguishable and no correlations are found with τ � 0.
However, if the photons are detected in different intervals, the
change in phase drives them to different outputs, resulting in a
coincidence probability that is twice as large as the orthogonal
polarisation case for τ = ±201 ns.
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Figures 2(b) and (c) exhibit a form that corresponds to a
different type of interference between the two photons depend-
ing on the value of φ. Bosonic (φ = 0) and fermionic inter-
ference (φ = π) is found with photons either bunching in
the same outputs or avoiding each other and giving rise to
coincidences, respectively. To see this, consider the follow-
ing argument, using the Schrödinger picture: the operators
after the beam splitter in the output channels C and D in I j

are linked to those before it by the standard unitary relation

â†
A j,B j =

(
â†

C j ± â†
D j

)
/
√

2. Therefore, after the beam splitter,

equation (7) results in:

|Ψout 〉 =
1

2
√

2

((
â†

C1â†
C1 + eiφâ†

C2â†
C2 − â†

D1â†D1 − eiφâ†
D2â†D2

)

+
(
eiφ + 1

) (
â†

C1â†
C2 − â†

D1â†D2

)

+
(
eiφ − 1

)(
â†

C2â†
D1 − â†

C1â†
D2

))
|0〉 . (8)

Here, |0〉 is represented in the basis of all the output ports and
temporal modes: |0〉 = |0C10C20D10D2〉. The first four terms
account for both photons arriving at the same detector in
the same time bin. These terms lead to the standard boson
bunching reported in the canonical HOM effect [19]. The last
four terms correspond to cross-correlations between detectors
and/or time bins. Unless the single photon detectors are num-
ber resolving, it is not possible to measure outcomes where
both detections occur at the same detector in the same time bin.
By eliminating the terms of the form â†Xiâ

†
Xi and rearranging the

terms, the observable sub-state from equation (8) becomes

∣∣∣Ψ̃out

〉
=

1

2
√

2

(
â†

C1

((
eiφ + 1

)
â†

C2 −
(
eiφ − 1

)
â†

D2

)

+ â†D1

((
eiφ − 1

)
â†

C2 −
(
eiφ + 1

)
â†

D2

))
|0〉 .

(9)

In this sub-state, the phase appears explicitly. By setting
φ = 0, equation (9) reads

∣∣∣Ψ̃(φ=0)
out

〉
=

1√
2

(
â†

C1â†
C2 − â†

D1â†
D2

)
|0〉 . (10)

This state again leads to the canonical HOM effect, yet across
the time bins this time. Therefore, both photons arrive at in
the same detector, but in separate time intervals. In contrast,
setting φ = π, equation (9) now gives

∣∣∣Ψ̃(φ=π)
out

〉
=

1√
2

(
â†

C1â†
D2 − â†

C2â†
D1

)
|0〉 , (11)

which is strikingly different to equation (10), as both photons
exhibit fermionic behaviour by arriving at different detectors.

Switching between the bosonic and fermionic behaviour by
choice of φ allows one to put the system into a pre-defined
quantum state conditioned on the random outcome of the first
measurement. This is implemented in the form of a feedback
mechanism, where a photon detection at either detector in I1

reveals the required change of φ to steer the remaining photon
in I2 to a specific detector. For instance, if detector D clicks
in I1, the second detection would normally occur in detector
D, due to the canonical HOM effect. However, as the sec-
ond halves of the photons have not reached the input ports at
the moment of detection, we can instantly change the phase
between I1 and I2 for one of the incoming photons to change
the port in which the second detection occurs. By choosing
φ = π and projecting the output state in equation (11) onto
the measured state |0C11D1〉 = â†

D1 |0C10D1〉 (involving only
the first time bin, since the second one has not yet occurred),
the state reduces to

〈
0C10D1 |âD1| Ψ̃(φ=π)

out

〉
=

1√
2

â†
C2 |0C20D2〉 . (12)

This state clearly shows that, when a measurement occurs in
I2, any click will be recorded in detector C. Analogously, if
detector C clicks in I1 and φ = 0 is chosen, both photons are
identical in their two halves and any detection in I2 will always
occur at detector C. This reduces the quantum state to

〈
0C10D1 |âC1| Ψ̃(φ=0)

out

〉
=

1√
2

â†
C2 |0C20D2〉 . (13)

Again, when a measurement occurs in I2, any click will be
recorded by detector C. Equations (12) and (13) imply that φ
can be used as a parameter for feedback control, to steer the
remaining photon to a desired output.

Returning to equations (3) and (4) with a value of φ condi-
tional on the measurement of a photon in I1, we observe the
expected behaviour of Pjoint (τ ), as illustrated in figure 2(d).
Figure 2(d) shows increased coincidences with τ < 0, for
which a detection in D occurs before a detection in C. There are
significantly less coincidences with τ > 0, as this would cor-
respond to detector C firing first and detector D second, which
cannot occur with an active feedback that always prompts the
second detection in C. Figure 2 shows the subset of probabil-
ities for cross-detector correlations only. For this reason, the
value

∫
Pjoint (τ ) dτ is bounded by 1/2. The theoretical curves

for same-detector correlations are shown in the supplementary
material (https://stacks.iop.org/JPB/55/054001/mmedia).

2.2. Experimental methods

To demonstrate this phenomenon experimentally, we gen-
erate photons in an atom-cavity system using a standard
V-STIRAP scheme [20] coupling the hyperfine levels of the
D2 line of 87Rb. Specifically, the |e〉 =

∣∣52S1/2, F = 1
〉

and
|g〉 =

∣∣52S1/2, F = 2
〉

ground states are coupled in aΛ-scheme
to the excited state |x〉 =

∣∣52P3/2, F′ = 3
〉

using a driving laser
Ω(t), as illustrated in figure 3. The cavity has a decay rate
of κ = 2π × 12 MHz and a maximum coupling strength of
g0 = 2π × 15 MHz. With the system initially prepared in
|e, 0〉, the laser adiabatically drives the system to |g, 1〉, where-
upon the photon is emitted from the cavity mode, leaving
the system in |g, 0〉, decoupled from further evolution. Atoms
are loaded into the cavity with an atomic fountain, from a
magneto-optic trap (MOT) located directly under the cavity.
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Figure 3. Photon production scheme for the generation of double-hump photons. Figure (a) shows the driving scheme used to generate
single photons for a single 87Rb atom inside of an optical cavity, following a coherent STIRAP process |F = 1〉 ≡ |e〉 and |F = 2〉 ≡ |g〉
ground states of 87Rb via the virtually excited state |F′ = 3〉 ≡ |x〉 [21]. (b) Shows the pre-calculated [22] pulse necessary for the photon
shape to follow the form sin2(2πt/δt), where δt, the photon coherence time, is kept between 400 ns and 450 ns, as can be seen theoretically
(solid line) and experimentally (dots) in (c). Our cavity has a decay rate of κ = 2π × 12 MHz and coupling strength of g = 2π × 15 MHz.

The spatio-temporal profile ζ (t) of the emitted photons can
be directly controlled by shaping the driving pulse [21] using
an acousto-optic modulator (AOM). For our purposes, it is
most crucial that the phase of the driving laser, which we con-
trol via a separate electro-optic modulator (EOM), is directly
mapped to the phase of the emitted photon. Figure 3(b) shows
the driving pulse shape and figure 3(c) the resulting doubly-
humped photon profile, evenly distributed across two 200 ns
time-bins, for a total coherence time of δt = 400 ns.

The experimental sequence for the production of photons is
as follows: photons are emitted at a repetition rate of 1 MHz,
with approximately 400 ns of the cycle used for the production
of a single photon. The remaining 600 ns of the cycle are used
to optically repump the atom to |e〉 to repeat the process. The
photon production and repumping timings can be changed at
will. After being emitted, the photons impinge on a polarising
beam splitter (PBS), and are randomly routed into two paths,
one of which incorporates a fibre loop of 300 m of optical path
length to induce a 1 μs delay. This ensures that a pair of sub-
sequently emitted photons arrives simultaneously at the beam
splitter, which is the only case of interest. A half wave plate
(HWP) sets the relative polarisation of both photons.

Note from figure 3(c), that the first halves of the emit-
ted photons span 60 m (∼ 200 ns), despite the optical path
length between the cavity and the detectors being only 1.5 m or
301.5 m, depending on the path taken. This means that the first
time interval of the two photon state is already being measured
before the second half of the second photon leaving the cav-
ity (travelling along the shorter path) has been fully generated.
The length of the interfering photons is sufficient for a feed-
back loop to alter the phase φ of the second half of the photon
under production, conditioned on the measurement outcome
within the first time interval (figure 1).

The feedback is implemented using a home-built cir-
cuit controller and single photon counting modules (SPCMs)
with a quantum efficiency of 60%–65% and a resolution
of <300 ps (Excelitas SPCM-AQRH-780-14-FC). The total
feedback loop latency, from the EOM via the cavity to the
SPCM, then back to the EOM via the controller circuitry is
97.0 ± 0.2 ns. Therefore, a conditioned phase change cannot

be realised in time if a photon detection in I2 occurs less than
97 ns after a detection in I1. The resulting error rate is limited to
0.2% for a sin4 (t) photon intensity envelope. All photon counts
are recorded with 81 ps accuracy using a qutools quTAU time-
to-digital converter (TDC). Detections within the 400 ns pho-
ton window are further processed for a dark count correction
for each SPCM. A detailed description on the error rates, time
budgets, the implementation of the logical feedback circuit
and background correction is provided in the supplemental
material.

3. Results

There are two different ways to look at the measured data.
One has been discussed previously and corresponds to figure 2,
which shows the coincidence probability as a function of the
time-difference between two detections. However, our main
interest is whether both detections are registered within the
same or opposite time intervals (I1 and I2). Therefore, the
same data can be represented in a cross-correlation diagram
(figure 4) showing the four possible values of the coincidence
probability between detectors C and D firing in either I1 or
I2. In contrast to figure 3, this allows to further differentiate
between coinciding detections in I1 and I2.

The cross detection probability of interfering photons with
perpendicular polarisations is shown in figure 2(a). This gives
rise to the random routing of the simultaneously arriving pho-
tons, such that the resulting time-resolved coincidence rate
yields the autocorrelation function of the photons’ intensity
profile. The cross-correlations are depicted in figure 4(a). For
the case of photons with orthogonal polarisations, these are
identical and theoretically equal to 1/8.

For photons with parallel polarisations, the cross corre-
lation probability is shown in figure 2(b) for φ = 0. This
measurement follows the predictions of photon bunching in
the canonical HOM effect, for which we expect no coinci-
dences. Photons bunch in the same output regardless of the
actual detection time. Thus, the probability of cross chan-
nel detections is expected to be zero for all time differences
(figure 4(b)).
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Figure 4. The correlations from figure 2 are now shown according to the exact detector-time-bin detections. In (a), an increased number in
the correlations between C1 and D1 with respect to C2 and D2 is explained due to a larger number of photons in the first time bin, as shown
in the supplementary material. In (d), we observe an increase in the correlations between C2 and D1 with respect to (a). This implies that a
detection in D in I1 has been used to steer the measurement of a photon in I2 to C, and serves as a demonstration that the second photon is
sent to a pre-defined output state, i.e., the cat is always observed alive. A limitation in visibility is evident when comparing the data to their
theoretical values, shown dashed. The data shown here has been corrected for correlations involving background noise, as explained in the
supplementary material. The crosses in the middle of the columns indicate the error obtained from a propagation of the statistical

√
N noise

affecting the underlying correlation counts.

Figure 2(c) shows the cross detection probability for pho-
tons with parallel polarisations when φ = π. In this case, the
photons antibunch (i.e., they are found in different output
channels if detected in different time intervals). The maxi-
mum probability to find photon–photon correlations occurs at
τ = ±δt, where δt is the length of the photons. This maximum
probability is twice the reference value of figure 2(a), which
is in accordance with the cross-channel detections shown in
figure 4(c). Nonetheless, the likelihood of correlated photon
detections in the same time interval is close to its theoretical
value of zero.

Finally, the cross detection probability shown in figure 2(d)
represents the case of active feedback on φ, for which we
expect any photon recorded in I2 be detected at C. Therefore,
the number of ‘D beforeC’ correlations reaches a maximum
while we barely see any ‘C beforeD’ correlations, as shown in
figure 4(d). Our experimental results demonstrate that classi-
cal feedback control of a quantum excitation spanning multiple
systems (RF pulse driving AOM → driving laser → atom →
cavity→ quantum field modes) can be achieved, resulting in a
photonic state with the property of always exiting through the
same output of a beam splitter.

Some differences between theoretical expectations and
experimental results are visible in figures 2 and 4. These can
be attributed to a partial loss of coherence or depolarisation of
the interfering photons, most evident from the presence of cor-
relations in the side lobes of figure 2(b). The mutual coherence

between photons is often characterised by the HOM visibility,
defined as

VHOM = 1 − N‖
N⊥

, (14)

where N‖ and N⊥ are the total number of correlations observed
for interfering photons with parallel and perpendicular polar-
isations, respectively. Using the results obtained with φ = 0
for N‖ we find VHOM = 0.78 ± 0.04. However, we measure a
reduced visibility of V ref = 0.61 ± 0.04 if we restrict our anal-
ysis to those correlations with detections across time intervals
I1 and I2. This serves as a reference for all effects discussed
here, as these affect only the correlations across both time
intervals.

The visibility under phase control upon switching between
φ = 0 and φ = π reads

Vφ =
Nπ − N0

Nπ + N0
, (15)

where N0 and Nπ represent the coincidence counts between
pairs of photons with relative phase shifts of φ = 0 and π,
respectively. Again, we only count coincidences across I1 and
I2, and find Vφ = 0.56 ± 0.06, in agreement with V ref within
error bars. This validates the robustness of the phase switch as
no further loss of coherence is induced5.

5 V ref and Vφ are expected to yield the same value, assuming N‖ = N0 and
N⊥ = (N0 + Nπ ) /2 due to the random splitting of photons.
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Since the feedback relies on a conditional phase switch,
we quantify its visibility by comparing coincidence counts
between intervals where a measurement in D occurs before one
in C (ND1C2), and vice-versa (NC1D2):

Vfeed =
ND1C2 − NC1D2

ND1C2 + NC1D2
. (16)

For our experiment, we find V feed = 0.56 ± 0.06, which is
identical to Vφ and equally within error bars of V ref . We there-
fore conclude that the feedback works as expected, without
introducing any loss of coherence.

4. Discussion

We have demonstrated a technique for steering the measure-
ment of a quantum superposition towards a definitive result, a
result which can be interpreted as ensuring that Schrödinger’s
cat is always observed alive. This was achieved by using a
feedback mechanism that enforces either bosonic or fermionic
behaviour on interfering photons with long coherence
lengths.

We emphasize that a classical interpretation of the
described experiment fails. Classically, one might expect the
feedback control to be successful only when the first detec-
tion corresponds to the photon in the delay arm. Otherwise,
if the first detection was of the photon in the short arm, the
phase change of the driving laser would have no effect (as the
photon under generation has already been detected). In a clas-
sical description, one would expect a random routing of the
second photon regardless of the phase switch, and a reduc-
tion of the feedback visibility to zero, which is clearly not the
case.

This result constitutes an elementary step towards intro-
ducing active control into processes such as quantum ran-
dom walks and optical networks [23]. Generalisations of
the technique demonstrated here are suitable candidates in
photonic switchyards requiring multiple photon streams for
studying multi-mode interferometry [24], where the determin-
istic routing of photons would be performed using feedback
operations.
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