94 research outputs found

    Pichia pastoris Fep1 is a [2Fe-2S] protein with a Zn finger that displays an unusual oxygen-dependent role in cluster binding

    Get PDF
    Fep1, the iron-responsive GATA factor from the methylotrophic yeast Pichia pastoris, has been characterised both in vivo and in vitro. This protein has two Cys(2)-Cys(2) type zinc fingers and a set of four conserved cysteines arranged in a Cys-X-5-Cys-X-8-Cys-X-2-Cys motif located between the two zinc fingers. Electronic absorption and resonance Raman spectroscopic analyses in anaerobic and aerobic conditions indicate that Fep1 binds iron in the form of a [2Fe-2S] cluster. Site-directed mutagenesis shows that replacement of the four cysteines with serine inactivates this transcriptional repressor. Unexpectedly, the inactive mutant is still able to bind a [2Fe-2S] cluster, employing two cysteine residues belonging to the first zinc finger. These two cysteine residues can act as alternative cluster ligands selectively in aerobically purified Fep1 wild type, suggesting that oxygen could play a role in Fep1 function by causing differential localization of the [Fe-S] cluster

    Evidence Favoring Molybdenum−Carbon Bond Formation in Xanthine Oxidase Action: \u3csup\u3e17\u3c/sup\u3eO- and \u3csup\u3e13\u3c/sup\u3eC-ENDOR and Kinetic Studies

    Get PDF
    The reaction mechanism of the molybdoenzyme xanthine oxidase has been further investigated by 13C and 17O ENDOR of molybdenum(V) species and by kinetic studies of exchange of oxygen isotopes. Three EPR signal-giving species were studied:  (i) Very Rapid, a transient intermediate in substrate turnover, (ii) Inhibited, the product of an inhibitory side reaction with aldehyde substrates, and (iii) Alloxanthine, a species formed by reaction of reduced enzyme with the inhibitor, alloxanthine. The Very Rapid signal was developed either with [8-13C]xanthine or with 2-oxo-6-methylpurine using enzyme equilibrated with [17O]H2O. The Inhibited signal was developed with 2H13C2HO and the Alloxanthine signal by using [17O]H2O. Estimates of Mo−C distances were made, from the anisotropic components of the 13C-couplings, by corrected dipolar coupling calculations and by back-calculation from assumed possible structures. Estimated distances in the Inhibited and Very Rapid species were about 1.9 and less than 2.4 Å, respectively. A Mo−C bond in the Inhibited species is very strongly suggested, presumably associated with side-on bonding to molybdenum of the carbonyl of the aldehyde substrate. For the Very Rapid species, a Mo−C bond is highly likely. Coupling from a strongly coupled 17O, not in the form of an oxo group, and no coupling from other oxygens was detected in the Very Rapid species. No coupled oxygens were detected in the Alloxanthine species. That the coupled oxygen of the Very Rapid species is the one that appears in the product uric acid molecule was confirmed by new kinetic data. It is concluded that this oxygen of the Very Rapid species does not, as frequently assumed, originate from the oxo group of the oxidized enzyme. A new turnover mechanism is proposed, not involving direct participation of the oxo ligand group, and based on that of Coucouvanis et al. [Coucouvanis, D., Toupadakis, A., Lane, J. D., Koo, S. M., Kim, C. G., Hadjikyriacou, A. (1991) J. Am. Chem. Soc. 113, 5271−5282]. It involves formal addition of the elements of the substrate (e.g., xanthine) across the MoS double bond, to give a Mo(VI) species. This is followed by attack of a “buried” water molecule (in the vicinity of molybdenum and perhaps a ligand of it) on the bound substrate carbon, to give an intermediate that on intramolecular one-electron oxidation gives the Very Rapid species. The latter, in keeping with the 13C, 17O, and 33S couplings, is presumed to have the 8-CO group of the uric acid product molecule bonded side-on to molybdenum, with the sulfido molybdenum ligand retained, as in the oxidized enzyme

    From chlorite dismutase towards HemQ -the role of the proximal H-bonding network in haeme binding

    Get PDF
    Synopsis Chlorite dismutase (Cld) and HemQ are structurally and phylogenetically closely related haeme enzymes differing fundamentally in their enzymatic properties. Clds are able to convert chlorite into chloride and dioxygen, whereas HemQ is proposed to be involved in the haeme b synthesis of Gram-positive bacteria. A striking difference between these protein families concerns the proximal haeme cavity architecture. The pronounced H-bonding network in Cld, which includes the proximal ligand histidine and fully conserved glutamate and lysine residues, is missing in HemQ. In order to understand the functional consequences of this clearly evident difference, specific hydrogen bonds in Cld from 'Candidatus Nitrospira defluvii' (NdCld) were disrupted by mutagenesis. The resulting variants (E210A and K141E) were analysed by a broad set of spectroscopic (UV-vis, EPR and resonance Raman), calorimetric and kinetic methods. It is demonstrated that the haeme cavity architecture in these protein families is very susceptible to modification at the proximal site. The observed consequences of such structural variations include a significant decrease in thermal stability and also affinity between haeme b and the protein, a partial collapse of the distal cavity accompanied by an increased percentage of low-spin state for the E210A variant, lowered enzymatic activity concomitant with higher susceptibility to self-inactivation. The high-spin (HS) ligand fluoride is shown to exhibit a stabilizing effect and partially restore wild-type Cld structure and function. The data are discussed with respect to known structure-function relationships of Clds and the proposed function of HemQ as a coprohaeme decarboxylase in the last step of haeme biosynthesis in Firmicutes and Actinobacteria

    The Role of CyaY in Iron Sulfur Cluster Assembly on the E. coli IscU Scaffold Protein

    Get PDF
    Progress in understanding the mechanism underlying the enzymatic formation of iron-sulfur clusters is difficult since it involves a complex reaction and a multi-component system. By exploiting different spectroscopies, we characterize the effect on the enzymatic kinetics of cluster formation of CyaY, the bacterial ortholog of frataxin, on cluster formation on the scaffold protein IscU. Frataxin/CyaY is a highly conserved protein implicated in an incurable ataxia in humans. Previous studies had suggested a role of CyaY as an inhibitor of iron sulfur cluster formation. Similar studies on the eukaryotic proteins have however suggested for frataxin a role as an activator. Our studies independently confirm that CyaY slows down the reaction and shed new light onto the mechanism by which CyaY works. We observe that the presence of CyaY does not alter the relative ratio between [2Fe2S]2+ and [4Fe4S]2+ but directly affects enzymatic activity

    Bioinorganic Chemistry of Alzheimer’s Disease

    Get PDF

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Hepatitis C Virus infection in Irish drug users and prisoners : a scoping review

    Get PDF
    Background: Hepatitis C infection is a major public health concern globally. In Ireland, like other European countries, people who use drugs (PWUD) and prisoners carry a larger HCV disease burden than the general population. Recent advances in HCV management have made HCV elimination across Europe a realistic goal. Engaging these two marginalised and underserved populations remains a challenge. The aim of this review was to map key findings and identify gaps in the literature (published and unpublished) on HCV infection in Irish PWUD and prisoners.Methods: A scoping review guided by the methodological framework set out by Levac and colleagues (based on previous work by Arksey & O’Malley).Results: A total of 58 studies were identified and divided into the following categories; Epidemiology, Guidelines and Policy, Treatment Outcomes, HCV -related Health Issues and qualitative research reporting on Patients’ and Health Providers’ Experiences. This review identified significantly higher rates of HCV infection among Irish prisoners and PWUD than the general population. There are high levels of undiagnosed and untreated HCV infection in both groups. There is poor engagement by Irish PWUD with HCV services and barriers have been identified. Prison hepatology nurse services have a positive impact on treatment uptake and outcomes. Identified gaps in the literature include; lack of accurate epidemiological data on incident infection, untreated chronic HCV infection particularly in PWUD living outside Dublin and those not engaged with OST. Conclusion: Ireland like other European countries has high levels of undiagnosed and untreated HCV infection. Collecting, synthesising and identifying gaps in the available literature is timely and will inform national HCV screening, treatment and prevention strategies
    • 

    corecore