131 research outputs found

    Exploiting topology-directed nanoparticle disassembly for triggered drug delivery

    Get PDF
    YesThe physical properties of cyclic and linear polymers are markedly different; however, there are few examples which exploit these differences in clinical applications. In this study, we demonstrate that self-assemblies comprised of cyclic-linear graft copolymers are significantly more stable than the equivalent linear-linear graft copolymer assemblies. This difference in stability can be exploited to allow for triggered disassembly by cleavage of just a single bond within the cyclic polymer backbone, via disulfide reduction, in the presence of intracellular levels of l-glutathione. This topological effect was exploited to demonstrate the first example of topology-controlled particle disassembly for the controlled release of an anti-cancer drug in vitro. This approach represents a markedly different strategy for controlled release from polymer nanoparticles and highlights for the first time that a change in polymer topology can be used as a trigger in the design of delivery vehicles. We propose such constructs, which demonstrate disassembly behavior upon a change in polymer topology, could find application in the targeted delivery of therapeutic agents.ERC are acknowledged for support to M.C.A., A.P.D. (grant number: 681559) and R.O.R. (grant number: 615142)

    1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers

    Get PDF
    yes2D materials such as graphene, LAPONITE® clays or molybdenum disulfide nanosheets are of extremely high interest to the materials community as a result of their high surface area and controllable surface properties. While several methods to access 2D inorganic materials are known, the investigation of 2D organic nanomaterials is less well developed on account of the lack of ready synthetic accessibility. Crystallization-driven self-assembly (CDSA) has become a powerful method to access a wide range of complex but precisely-defined nanostructures. The preparation of 2D structures, however, particularly those aimed towards biomedical applications, is limited, with few offering biocompatible and biodegradable characteristics as well as control over self-assembly in two dimensions. Herein, in contrast to conventional self-assembly rules, we show that the solubility of polylactide (PLLA)-based amphiphiles in alcohols results in unprecedented shape selectivity based on unimer solubility. We use log Poct analysis to drive solvent selection for the formation of large uniform 2D diamond-shaped platelets, up to several microns in size, using long, soluble coronal blocks. By contrast, less soluble PLLA-containing block copolymers yield cylindrical micelles and mixed morphologies. The methods developed in this work provide a simple and consistently reproducible protocol for the preparation of well-defined 2D organic nanomaterials, whose size and morphology are expected to facilitate potential applications in drug delivery, tissue engineering and in nanocomposites.University of Warwick, Materials GRP, EPSRC, The Royal Society, ER

    Fabrication of crystals from single metal atoms

    Get PDF
    YesMetal nanocrystals offer new concepts for the design of nanodevices with a range of potential applications. Currently the formation of metal nanocrystals cannot be controlled at the level of individual atoms. Here we describe a new general method for the fabrication of multi-heteroatom-doped graphitic matrices decorated with very small, ångström-sized, three-dimensional (3D)-metal crystals of defined size. We irradiate boron-rich precious-metal-encapsulated self-spreading polymer micelles with electrons and produce, in real time, a doped graphitic support on which individual osmium atoms hop and migrate to form 3D-nanocrystals, as small as 15 Å in diameter, within 1 h. Crystal growth can be observed, quantified and controlled in real time. We also synthesize the first examples of mixed ruthenium–osmium 3D-nanocrystals. This technology not only allows the production of ångström-sized homo- and hetero-crystals, but also provides new experimental insight into the dynamics of nanocrystals and pathways for their assembly from single atoms.We thank the Leverhulme Trust (Early Career Fellowship No. ECF-2013-414 to NPEB), the University of Warwick (Grant No. RDF 2013-14 to NPEB), the Swiss National Science Foundation (Grant No. PA00P2_145308 to NPEB and PBNEP2_142949 to APB), the ERC (Grant No. 247450 to PJS), EPSRC (EP/G004897/1 to RKOR, and EP/F034210/1 to PJS) and Science City (AWM/ERDF) for support. We thank the Wellcome Trust (Grant No. 055663/Z/98/Z) for funding the Electron Microscopy Facility, School of Life Sciences, University of Warwick. We also thank COST Action CM1105 for stimulating discussions, Thomas Wilks for supplying the micelle image for Figure 1, and the Australian Synchrotron and the University of Monash for allocation of time on the SAXS/ WAXS beamline and funding. The 2000FX Gatan Orius digital TEM camera used in this research was funded by Science City: Creating and Characterizing Next Generation Advanced Materials, with support from Advantage West Midlands and part funded by the European Regional Development Fund

    Exploiting nucleobase-containing materials : from monomers to complex morphologies using RAFT dispersion polymerization

    Get PDF
    yesThe synthesis of nucleobase-containing polymers was successfully performed by RAFT dispersion polymerization in both chloroform and 1,4-dioxane and self-assembly was induced by the polymerizations. A combination of scattering and microscopy techniques were used to characterize the morphologies. It is found that the morphologies of self-assembled nucleobase-containing polymers are solvent dependent. By varying the DP of the core-forming block, only spherical micelles with internal structures were obtained in chloroform when using only adenine-containing methacrylate or a mixture of adenine-containing methacrylate and thymine-containing methacrylate as monomers. However, higher order structures and morphology transitions were observed in 1,4-dioxane. A sphere-rod-lamella-twisted bilayer transition was observed in this study. Moreover, the kinetics of the dispersion polymerizations were studied in both solvents, suggesting a different formation mechanism in these systems.University of Warwick, Swiss National Science Foundation, EPSRC, Birmingham Science City, Advanatfe West Midlands (AWM), European Regional Development Fund (ERDF), Science City Research Alliance, Higher Education Funding Council for England (HEFCE

    The performance of surfactant mixtures at low temperatures

    Get PDF
    Optimising detergency at lower temperatures is of increasing interest due to environmental and economic factors, and requires a greater understanding of the effects of temperature on the adsorption of surfactant mixtures at interfaces. The adsorption properties of surfactant mixtures and biosurfactant/surfactant mixtures have been studied at room temperatures and at temperatures below ambient using surface tension and neutron reflectivity measurements. For the ternary surfactant mixture of octaethylene monododecyl ether, C12E8, sodium dodecyl 6-benzene sulfonate, LAS, and sodium dioxyethylene glycol monododecyl sulfate, SLES, the surface tension at the air-water interface increases with decreasing temperature. In contrast, there is a notable reduction in the increase in the surface tension with a decrease in temperature from 25 °C to 10 °C for the 5 component rhamnolipid/surfactant mixture of the mono-rhamnose, R1, and di-rhamnose, R2, with C12E8/LAS/SLES. The associated neutron reflectivity data for the ternary C12E8/LAS/SLES mixture and the significant observation is that the 3, 4, and 5-component mixtures containing rhamnolipids in conjunction with the other surfactants show changes in composition and adsorbed amounts of the individual components which are close to the experimental error. However the significant observation is that the neutron reflectivity data indicate that the improved surface tension tolerance at lower temperatures is associated with the dominance of the rhamnolipid adsorption in such mixtures. Hence the introduction of the rhamnolipids provides a tolerance to the adverse effects associated with reduced temperatures, and a potential for improved detergency at relatively low temperatures

    Spoken language interaction with robots: Recommendations for future research

    Get PDF
    With robotics rapidly advancing, more effective human–robot interaction is increasingly needed to realize the full potential of robots for society. While spoken language must be part of the solution, our ability to provide spoken language interaction capabilities is still very limited. In this article, based on the report of an interdisciplinary workshop convened by the National Science Foundation, we identify key scientific and engineering advances needed to enable effective spoken language interaction with robotics. We make 25 recommendations, involving eight general themes: putting human needs first, better modeling the social and interactive aspects of language, improving robustness, creating new methods for rapid adaptation, better integrating speech and language with other communication modalities, giving speech and language components access to rich representations of the robot’s current knowledge and state, making all components operate in real time, and improving research infrastructure and resources. Research and development that prioritizes these topics will, we believe, provide a solid foundation for the creation of speech-capable robots that are easy and effective for humans to work with

    Predictors of single word spelling in English-speaking children: a cross sectional study

    Get PDF
    Background: The study aimed to explore to what extent variables associated with lexical and sublexical spelling processes predicted single word spelling ability, and whether patterns of lexical and sublexical processes were different across ages. Methods: Beginning (mean age 7-years, N=144) and advanced (mean age 9-years, N=114) English-speaking spellers completed tasks associated with sublexical processing (phonological ability and phonological short-term memory), lexical processing (visual short-term memory, visual attention span), and factors known to predict spelling (e.g., rapid automatised naming). Results: Phonological ability, rapid automatised naming, visual short-term memory and visual attention span were significant predictors of spelling accuracy for beginning spellers, while for more advanced spellers, only visual attention span was a significant predictor. Conclusions: The findings suggested that for beginning spellers, both lexical and sublexical processes are important for single word spelling, but with increasing literacy experience, lexically related variables are more important

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey

    Get PDF
    K2's Campaign 9 (K2C9) will conduct a ~3.7 deg2 survey toward the Galactic bulge from 2016 April 22 through July 2 that will leverage the spatial separation between K2 and the Earth to facilitate measurement of the microlens parallax πE{\pi }_{{\rm{E}}} for 170\gtrsim 170 microlensing events. These will include several that are planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this article we provide an overview of the K2C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of K2C9, and the array of resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in K2C9, which constitutes an important pathfinding mission and community exercise in anticipation of WFIRST
    corecore