32 research outputs found

    Molecular studies of phages-Klebsiella pneumoniae in mucoid environment: innovative use of mucolytic agents prior to the administration of lytic phages

    Get PDF
    Mucins are important glycoproteins that form a protective layer throughout the gastrointestinal and respiratory tracts. There is scientific evidence of increase in phage-resistance in the presence of mucin for some bacterial pathogens. Manipulation in mucin composition may ultimately influence the effectiveness of phage therapy. In this work, two clinical strains of K. pneumoniae (K3574 and K3325), were exposed to the lytic bacteriophage vB_KpnS-VAC35 in the presence and absence of mucin on a long-term co-evolution assay, in an attempt to mimic in vitro the exposure to mucins that bacteria and their phages face in vivo. Enumerations of the bacterial and phage counts at regular time intervals were conducted, and extraction of the genomic DNA of co-evolved bacteria to the phage, the mucin and both was performed. We determined the frequency of phage-resistant mutants in the presence and absence of mucin and including a mucolytic agent (N-acetyl L-cysteine, NAC), and sequenced them using Nanopore. We phenotypically demonstrated that the presence of mucin induces the emergence of bacterial resistance against lytic phages, effectively decreased in the presence of NAC. In addition, the genomic analysis revealed some of the genes relevant to the development of phage resistance in long-term co-evolution, with a special focus on the mucoid environment. Genes involved in the metabolism of carbohydrates were mutated in the presence of mucin. In conclusion, the use of mucolytic agents prior to the administration of lytic phages could be an interesting therapeutic option when addressing K. pneumoniae infections in environments where mucin is overproduced.The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study has been funded by Instituto de Salud Carlos III (ISCIII) through the projects PI19/00878 and PI22/00323 and co-funded by the European Union, and by the Study Group on Mechanisms of Action and Resistance to Antimicrobials, GEMARA (SEIMC). (SEIMC, http://www.seimc.org/). This research was also supported by CIBERINFEC (CIBER21/13/00095) and by Personalized and precision medicine grant from the Instituto de Salud Carlos III (MePRAM Project, PMP22/00092). MT was financially supported by the Miguel Servet Research Programme (SERGAS and ISCIII). OP, LF-G, and ML were financially supported by the grants IN606A-2020/035, IN606B-2021/013, and IN606C-2022/002, respectively (GAIN, Xunta de Galicia). IB was financially supported by the pFIS program (ISCIII, FI20/00302). Finally, to thank to PIRASOA laboratory which is the reference laboratory for molecular typing of nosocomial pathogens and detection of mechanisms of resistance to antimicrobials of health interest in Andalusia, Virgen Macarena Hospital, Seville, to send us the clinical isolates. Thanks to Alvaro Pascual and Luis Martínez-Martínez from Virgen Macarena Hospital, Seville and Reina Sofia Hospital, Cordoba.S

    Proteomic Study of the Interactions between Phages and the Bacterial Host Klebsiella pneumoniae

    Get PDF
    Phages and bacteria have acquired resistance mechanisms for protection. In this context, the aims of the present study were to analyze the proteins isolated from 21 novel lytic phages of Klebsiella pneumoniae in search of defense mechanisms against bacteria and also to determine the infective capacity of the phages. A proteomic study was also conducted to investigate the defense mechanisms of two clinical isolates of K. pneumoniae infected by phages. For this purpose, the 21 lytic phages were sequenced and de novo assembled. The host range was determined in a collection of 47 clinical isolates of K. pneumoniae, revealing the variable infective capacity of the phages. Genome sequencing showed that all of the phages were lytic phages belonging to the order Caudovirales. Phage sequence analysis revealed that the proteins were organized in functional modules within the genome. Although most of the proteins have unknown functions, multiple proteins were associated with defense mechanisms against bacteria, including the restriction-modification system, the toxin-antitoxin system, evasion of DNA degradation, blocking of host restriction and modification, the orphan CRISPR-Cas system, and the anti-CRISPR system. Proteomic study of the phage-host interactions (i.e., between isolates K3574 and K3320, which have intact CRISPR-Cas systems, and phages vB_KpnS-VAC35 and vB_KpnM-VAC36, respectively) revealed the presence of several defense mechanisms against phage infection (prophage, defense/virulence/resistance, oxidative stress and plasmid proteins) in the bacteria, and of the Acr candidate (anti-CRISPR protein) in the phages. IMPORTANCE Researchers, including microbiologists and infectious disease specialists, require more knowledge about the interactions between phages and their bacterial hosts and about their defense mechanisms. In this study, we analyzed the molecular mechanisms of viral and bacterial defense in phages infecting clinical isolates of K. pneumoniae. Viral defense mechanisms included restriction-modification system evasion, the toxin-antitoxin (TA) system, DNA degradation evasion, blocking of host restriction and modification, and resistance to the abortive infection system, anti-CRISPR and CRISPR-Cas systems. Regarding bacterial defense mechanisms, proteomic analysis revealed expression of proteins involved in the prophage (FtsH protease modulator), plasmid (cupin phosphomannose isomerase protein), defense/virulence/resistance (porins, efflux pumps, lipopolysaccharide, pilus elements, quorum network proteins, TA systems, and methyltransferases), oxidative stress mechanisms, and Acr candidates (anti-CRISPR protein). The findings reveal some important molecular mechanisms involved in the phage-host bacterial interactions; however, further study in this field is required to improve the efficacy of phage therapy.This study was funded by grant PI19/00878 and PI22/00323 awarded to M.T. within the State Plan for R1D1I 2013-2016 (National Plan for Scientific Research, Technological Development, and Innovation 2008-2011) and cofinanced by the ISCIII-Deputy General Directorate for Evaluation and Promotion of Research/European Regional Development Fund “A Way of Making Europe” and Instituto de Salud Carlos III FEDER, Spanish Network for the Research in Infectious Diseases (REIPI; RD16/0016/0006 and RD16/0016/0008), CIBERINFEC (CIBER21/13/00012, CB21/13/00049, CIBER21/13/00084, and CIBER21/13/00095), and Personalized Medicine Project (MePRAM; PMP/00092) and also by the Study Group on Mechanisms of Action and Resistance to Antimicrobials, GEMARA (SEIMC; http://www.seimc.org/). M.T. was financially supported by the Miguel Servet Research Program (SERGAS and ISCIII). I.B. was financially supported by pFIS program (ISCIII, FI20/00302). O.P., L.F.-G., and M.L. were financially supported by grants IN606A-2020/035, IN606B-2021/013, and IN606C-2022/002, respectively (GAIN; Xunta de Galicia). The authors acknowledge CESGA (www.cesga.es) in Santiago de Compostela, Spain, for providing access to computing facilities and the RIAIDT-USC analytical facilities. Finally, We thank researchers from the Spanish Network of Bacteriophages and Transducer Elements (FAGOMA) for contributing the lytic phages. I.B., L.B., O.P., and L.F.-G. developed the experiments, analyzed the results, and wrote the original manuscript. M.L., C.O.C. and A.B.P. helped to prepare the visual presentation of the results. F.F.C., Á.P., L.M.-M., and J.O.-I. rewrote the manuscript. M.T. financed and directed the experiments and supervised the writing of the originalmanuscript. We declare that there are no conflicts of interest.S

    Regulation of anti-phage defense mechanisms by using cinnamaldehyde as a quorum sensing inhibitor

    Get PDF
    BackgroundMultidrug-resistant bacteria and the shortage of new antibiotics constitute a serious health problem. This problem has led to increased interest in the use of bacteriophages, which have great potential as antimicrobial agents but also carry the risk of inducing resistance. The objective of the present study was to minimize the development of phage resistance in Klebsiella pneumoniae strains by inhibiting quorum sensing (QS) and thus demonstrate the role of QS in regulating defense mechanisms.ResultsCinnamaldehyde (CAD) was added to K. pneumoniae cultures to inhibit QS and thus demonstrate the role of the signaling system in regulating the anti-phage defense mechanism. The QS inhibitory activity of CAD in K. pneumoniae was confirmed by a reduction in the quantitative expression of the lsrB gene (AI-2 pathway) and by proteomic analysis. The infection assays showed that the phage was able to infect a previously resistant K. pneumoniae strain in the cultures to which CAD was added. The results were confirmed using proteomic analysis. Thus, anti-phage defense-related proteins from different systems, such as cyclic oligonucleotide-based bacterial anti-phage signaling systems (CBASS), restriction–modification (R–M) systems, clustered regularly interspaced short palindromic repeat-Cas (CRISPR-Cas) system, and bacteriophage control infection (BCI), were present in the cultures with phage but not in the cultures with phage and CAD. When the QS and anti-phage defense systems were inhibited by the combined treatment, proteins related to phage infection and proliferation, such as the tail fiber protein, the cell division protein DamX, and the outer membrane channel protein TolC, were detected.ConclusionInhibition of QS reduces phage resistance in K. pneumoniae, resulting in the infection of a previously resistant strain by phage, with a significant increase in phage proliferation and a significant reduction in bacterial growth. QS inhibitors could be considered for therapeutic application by including them in phage cocktails or in phage-antibiotic combinations to enhance synergistic effects and reduce the emergence of antimicrobial resistance

    Glaciolacustrine deposits formed in an ice-dammed tributary valley in the south-central Pyrenees: new evidence for late Pleistocene climate

    Get PDF
    Combined geomorphic features, stratigraphic characteristics and sedimentologic interpretation, coupled with optically stimulated luminescence (OSL) dates, of a glacio-fluvio-lacustrine sequence (Linás de Broto, northern Spain) provide new information to understand the palaeoenvironmental significance of dynamics of glacier systems in the south-central Pyrenees during the Last Glacial Cycle (≈130 ka to 14 ka). The Linás de Broto depositional system consisted of a proglacial lake fed primarily by meltwater streams emanating from the small Sorrosal glacier and dammed by a lateral moraine of the Ara trunk glacier. The resulting glacio-fluvio-lacustrine sequence, around 55 m thick, is divided into five lithological units consisting of braided fluvial (gravel deposits), lake margin (gravel and sand deltaic deposits) and distal lake (silt and clay laminites) facies associations. Evolution of the depositional environment reflects three phases of progradation of a high-energy braided fluvial system separated by two phases of rapid expansion of the lake. Fluvial progradation occurred during short periods of ice melting. Lake expansion concurred with ice-dam growth of the trunk glacier. The first lake expansion occurred over a time range between 55 ± 9 ka and 49 ± 11 ka, and is consistent with the age of the Viu lateral moraine (49 ± 8 ka), which marks the maximum areal extent of the Ara glacier during the Last Glacial Cycle. These dates confirm that the maximum areal extent of the glacier occurred during Marine Isotope Stages 4 and 3 in the south-central Pyrenees, thus before the Last Glacial Maximum. The evolution of the Linás de Broto depositional system during this maximum glacier extent was modulated by climate oscillations in the northern Iberian Peninsula, probably related to latitudinal shifts of the atmospheric circulation in the southern North-Atlantic Ocean, and variations in summer insolation intensity

    With flowers to La Atkins

    Get PDF
    Photobook, Flowers, Gardens, Vegetables, Plants, World Photobook Day, International Photobook Day, 2021Anna Atkins nos regaló un fotolibro de algas, maravillosamente azules, que son como flores del mundo subacuático. Este año, para celebrar el Día Internacional del Fotolibro 2021, os proponemos hacer un fotolibro colectivo que será como un ramo de flores para Anna. Se trata de hacer fotos a flores, hierbas, plantas, hierbajos, suculentas, cactus... Las fotos nos van a permitir poner en el ramo lo que más nos guste sin preocuparnos de los problemas que nos daría una pieza floral fresca. Podéis sacar la foto a una flor o planta viva, vuestra o de un jardín público o del campo Podéis fotografiar algo de un herbario o una flor prensada que guardabais dentro de un libro Podéis fotografiar una foto de una flor Podéis sacarle una foto a una flor de plástico Podéis fotografiar un dibujo o una pintura (con motivos florales o vegetales, claro) Podéis fotografiar una planta carnívora (en ayunas o haciendo la digestión) Podéis fotografiar flores del mal o del "buenri" Siempre que sea vegetal y/o floral entrará en este libro ramo para Anna. ¡Queremos tanto a Anna! Vamos a mandarle flores como para una boda, como para un fiestón, como para una diva de la ópera que no conoce las alergias y le cabe de todo en el camerino, como para la primavera que está comenzando en el Cono Sur. Organizan: Biblioteca de la Facultad de Bellas Artes de la UCM Photobook Club MadridFac. de Bellas Artesunpu

    Study of 32 new phage tail‑like bacteriocins (pyocins) from a clinical collection of Pseudomonas aeruginosa and of their potential use as typing markers and antimicrobial agents

    Get PDF
    Phage tail-like bacteriocins (PTLBs) are large proteomic structures similar to the tail phages. These structures function in bacterial competition by making pores in the membrane of their competitors. The PTLBs identified in Pseudomonas aeruginosa are known as R-type and F-type pyocins, which have a narrow spectrum of action. Their specificity is determined by the tail fiber and is closely related to the lipopolysaccharide type of the target competitor strain. In this study, the genome sequences of 32 clinical of P. aeruginosa clinical isolates were analysed to investigate the presence of R-type and F-type pyocins, and one was detected in all strains tested. The pyocins were classified into 4 groups on the basis of the tail fiber and also the homology, phylogeny and structure of the cluster components. A relationship was established between these groups and the sequence type and serotype of the strain of origin and finally the killing spectrum of the representative pyocins was determined showing a variable range of activity between 0 and 37.5%. The findings showed that these pyocins could potentially be used for typing of P. aeruginosa clinical isolates, on the basis of their genomic sequence and cluster structure, and also as antimicrobial agents

    Data_Sheet_1_Molecular studies of phages-Klebsiella pneumoniae in mucoid environment: innovative use of mucolytic agents prior to the administration of lytic phages.PDF

    No full text
    Mucins are important glycoproteins that form a protective layer throughout the gastrointestinal and respiratory tracts. There is scientific evidence of increase in phage-resistance in the presence of mucin for some bacterial pathogens. Manipulation in mucin composition may ultimately influence the effectiveness of phage therapy. In this work, two clinical strains of K. pneumoniae (K3574 and K3325), were exposed to the lytic bacteriophage vB_KpnS-VAC35 in the presence and absence of mucin on a long-term co-evolution assay, in an attempt to mimic in vitro the exposure to mucins that bacteria and their phages face in vivo. Enumerations of the bacterial and phage counts at regular time intervals were conducted, and extraction of the genomic DNA of co-evolved bacteria to the phage, the mucin and both was performed. We determined the frequency of phage-resistant mutants in the presence and absence of mucin and including a mucolytic agent (N-acetyl L-cysteine, NAC), and sequenced them using Nanopore. We phenotypically demonstrated that the presence of mucin induces the emergence of bacterial resistance against lytic phages, effectively decreased in the presence of NAC. In addition, the genomic analysis revealed some of the genes relevant to the development of phage resistance in long-term co-evolution, with a special focus on the mucoid environment. Genes involved in the metabolism of carbohydrates were mutated in the presence of mucin. In conclusion, the use of mucolytic agents prior to the administration of lytic phages could be an interesting therapeutic option when addressing K. pneumoniae infections in environments where mucin is overproduced.</p
    corecore