2,744 research outputs found

    Electric field control of exchange bias in multiferroic epitaxial heterostructures

    Get PDF
    The magnetic exchange bias between epitaxial thin films of the multiferroic (antiferromagnetic and ferroelectric) hexagonal YMnO3 oxide and a soft ferromagnetic (FM) layer is used to couple the magnetic response of the ferromagnetic layer to the magnetic state of the antiferromagnetic one. We will show that biasing the ferroelectric YMnO3 layer by an appropriate electric field allows modifying and controlling the magnetic exchange bias and subsequently the magnetotransport properties of the FM layer. This finding may contribute to pave the way towards a new generation of electric-field controlled spintronics devices.Comment: 15 pages, 5 figures, submitte

    Magnetic actuator based on giant magnetostrictive material Terfenol-D with strain and temperature monitoring using FBG optical sensor

    Full text link
    We have designed a temperature and strain monitoring system for a magnetic actuator based on the giant magnetostrictive material Terfenol-D (Tb0.3 Dy0.7Fe1.92) with Fiber Bragg grating (FBG) sensors. Magneto-elastic properties of Terfenol-D depend on magnetization, stress pre-history, and temperature. In order to simultaneously monitor these effects, we have implemented a system based on a cylindrical Terfenol-D rod monitored with four FBGs that allows making the appropriate compensations on the strain measurement due to temperature drift. We have measured the magnetostriction in the axial and the transverse directions for the Terfenol-D rod with two perpendicular FBGs, and calculated the Poisson ratio. An additional mechanical system for strain amplification has been designed in order to increase sensitivity, by a factor of 4, in the strain measurement with the FBG sensor.García Miquel, ÁH.; Barrera Vilar, D.; Amat, R.; Kurlyandskaya, GV.; Sales Maicas, S. (2016). Magnetic actuator based on giant magnetostrictive material Terfenol-D with strain and temperature monitoring using FBG optical sensor. Measurement. 80(2):201-206. doi:10.1016/j.measurement.2015.11.035S20120680

    Magnetic actuator based on giant magnetostrictive material Terfenol-D with strain and temperature monitoring using FBG optical sensor

    Full text link
    We have designed a temperature and strain monitoring system for a magnetic actuator based on the giant magnetostrictive material Terfenol-D (Tb0.3 Dy0.7Fe1.92) with Fiber Bragg grating (FBG) sensors. Magneto-elastic properties of Terfenol-D depend on magnetization, stress pre-history, and temperature. In order to simultaneously monitor these effects, we have implemented a system based on a cylindrical Terfenol-D rod monitored with four FBGs that allows making the appropriate compensations on the strain measurement due to temperature drift. We have measured the magnetostriction in the axial and the transverse directions for the Terfenol-D rod with two perpendicular FBGs, and calculated the Poisson ratio. An additional mechanical system for strain amplification has been designed in order to increase sensitivity, by a factor of 4, in the strain measurement with the FBG sensor. © 2015 Elsevier Ltd

    The role of selenium in shaping mice brain metabolome and selenoproteome through the gut-brain axis by combining metabolomics, metallomics, gene expression, and amplicon sequencing

    Get PDF
    Selenium (Se) is a trace element crucial for human health. Recently, the impact of Se supplementation on gut microbiota has been pointed out as well as its influence on the expression of certain selenoproteins and gut metabolites. This study aims to elucidate the link between Se supplementation, brain selenoproteins and brain metabolome as well as the possible connection with the gut-brain axis. To this end, an in vivo study with 40 BALB/c mice was carried out. The study included conventional ( n = 20) and mice model with microbiota depleted by antibiotics ( n = 20) under a regular or Se supplemented diet. Brain selenoproteome was determined by a transcriptomic/gene expression profile, while brain metabolome and gut microbiota profiles were accomplished by untargeted metabolomics and amplicon sequencing, respectively. The total content of Se in brain was also determined. The selenoproteins genes Dio and Gpx isoenzymes, SelenoH, SelenoI, SelenoT, SelenoV, and SelenoW and 31 metabolites were significantly altered in the brain after Se supplementation in conventional mice, while 11 selenoproteins and 26 metabolites were altered in microbiota depleted mice. The main altered brain metabolites were related to glyoxylate and dicarboxylate metabolism, amino acid metabolism, and gut microbiota that have been previously related with the gut-brain axis ( e.g., members of Lachnospiraceae and Ruminococcaceae families ). Moreover, specific associations were determined between brain selenoproteome and metabolome, which correlated with the same bacteria, suggesting an intertwined mechanism. Our results demonstrated the effect of Se on brain metabolome through specific selenoproteins gene expression and gut microbiota.This work was supported by the projects: PG2018-096608-B- C21 and PID2021-123073NB-C21 from the Spanish Ministry of Science and Innovation (MICIN) . Generación del Conocimiento . MCIN/ AEI /10.13039/50110 0 011033/ FEDER “Una manera de hacer Europa”, UHU-1256905 and UHU-202009 from the FEDER Andalusian Operative Program 2014-2020 (Ministry of Economy, Knowledge, Business and Universities, Regional Government of Andalusia, Spain). S.R.A. thanks the Spanish Ministry of Science and Innovation for a PhD scholarship ( BES-2016-076364 ). The authors are grateful to FEDER (European Community) for financial support, Grant UNHU13-1E-1611 . The authors would like to acknowledge the support from The Ramón Areces Foundation (ref. CIVP19A5918 ). Funding for open access charge: Universidad de Huelva / CBUA

    Implications of zoonotic and vector-borne parasites to free-roaming cats in central Spain

    Get PDF
    Cats are definitive hosts and reservoirs for several parasites, some of which are responsible for serious zoonotic diseases. We conducted a case-control study of data from a trap-neuter-return (TNR) programme (years 2014-2017) designed to examine the prevalence of zoonotic parasites in free-roaming cats living in urban areas of central Spain. In the animal population tested (n = 263), we detected a 29.2% prevalence of endoparasites, including high rates of cestodes (12.9%) and Toxocara cati (11.7%). While faecal samples showed no Toxoplasma gondii oocysts, the seroprevalence of T. gondii infection was 24.2%. Antibodies to Leishmania infantum were detected in 4.8% of the animals, though all skin and blood samples analyzed were PCR negative for this parasite. Ectoparasites (ticks and fleas) were found in 4.6% of the cat population, and 10.6% of the cats were detected with Otodectes cynotis. Finally, 6.3% and 7.9% cats tested positive for feline leukaemia virus and feline immunodeficiency virus, respectively. Our study provides useful information for animal-welfare and public-health, as the parasites detected can affect native wild animals through predation, competition and disease transmission. Our detection of zoonotic parasites such as L. infantum, T. gondii, T. cati, Giardia duodenalis and several ectoparasites prompts an urgent need for health control measures in stray cats.S

    A Comparative Electrochemical-Ozone Treatment for Removal of Phenolphthalein

    Get PDF
    The degradation of aqueous solutions containing phenolphthalein was carried out using ozone and electrochemical processes; the two different treatments were performed for 60 min at pH 3, pH 7, and pH 9. The electrochemical oxidation using boron-doped diamond electrodes processes was carried out using three current density values: 3.11 mA⋅cm −2 , 6.22 mA⋅cm −2 , and 9.33 mA⋅cm −2 , whereas the ozone dose was constantly supplied at 5 ± 0.5 mgL −1 . An optimal degradation condition for the ozonation treatment is at alkaline pH, while the electrochemical treatment works better at acidic pH. The electrochemical process is twice better compared with ozonation

    Bar pattern speeds in CALIFA galaxies: I. Fast bars across the Hubble sequence

    Get PDF
    The bar pattern speed (Ωb\Omega_{\rm b}) is defined as the rotational frequency of the bar, and it determines the bar dynamics. Several methods have been proposed for measuring Ωb\Omega_{\rm b}. The non-parametric method proposed by Tremaine \& Weinberg (1984; TW) and based on stellar kinematics is the most accurate. This method has been applied so far to 17 galaxies, most of them SB0 and SBa types. We have applied the TW method to a new sample of 15 strong and bright barred galaxies, spanning a wide range of morphological types from SB0 to SBbc. Combining our analysis with previous studies, we investigate 32 barred galaxies with their pattern speed measured by the TW method. The resulting total sample of barred galaxies allows us to study the dependence of Ωb\Omega_{\rm b} on galaxy properties, such as the Hubble type. We measured Ωb\Omega_{\rm b} using the TW method on the stellar velocity maps provided by the integral-field spectroscopy data from the CALIFA survey. Integral-field data solve the problems that long-slit data present when applying the TW method, resulting in the determination of more accurate Ωb\Omega_{\rm b}. In addition, we have also derived the ratio R\cal{R} of the corotation radius to the bar length of the galaxies. According to this parameter, bars can be classified as fast (R\cal{R} 1.4).Forallthegalaxies,1.4). For all the galaxies, \cal{R}iscompatiblewithintheerrorswithfastbars.Wecannotruleout(at95 is compatible within the errors with fast bars. We cannot rule out (at 95\%level)thefastbarsolutionforanygalaxy.Wehavenotobservedanysignificanttrendbetween level) the fast bar solution for any galaxy. We have not observed any significant trend between \cal{R}$ and the galaxy morphological type. Our results indicate that independent of the Hubble type, bars have been formed and then evolve as fast rotators. This observational result will constrain the scenarios of formation and evolution of bars proposed by numerical simulations.Comment: 17 pages, 10 figures, accepted for publication in A&

    Tracing kinematic (mis)alignments in CALIFA merging galaxies: Stellar and ionized gas kinematic orientations at every merger stage

    Get PDF
    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. We compare our sample with 80 non-interacting galaxies. We measure for the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin_{\mathrm{kin}}, approaching and receding) directly from the velocity fields with no assumptions on the internal motions. This method allow us to derive the deviations of the kinematic PAs from a straight line (δ\deltaPAkin_{\mathrm{kin}}). Around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. Those misalignments are present mostly in galaxies with morphological signatures of interaction. Alignment between the kinematic sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA from a straight line in the stellar component measured by δ\deltaPAkin_{\mathrm{kin}} are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δ\deltaPAkin_{\mathrm{kin}} is larger than typical values derived from isolated galaxies (48%), making this parameter a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16 degrees, compared to 10% from the control sample. Our results show the impact of interactions in the internal structure of galaxies as well as the wide variety of their velocity distributions. This study also provides a local Universe benchmark for kinematic studies in merging galaxies at high redshift.Comment: 24 pages,11 Figures, Accepted for publication in Astronomy & Astrophysics. The entire set of stellar and ionized gas velocity fields of the interacting/merging sample will be available in the electronic version of the journa

    Benchmarking of human Y-chromosomal haplogroup classifiers with whole-genome and whole-exome sequence data

    Get PDF
    In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data
    corecore