11 research outputs found

    Towards zero pollution vehicles by advanced fuels and exhaust aftertreatment technologies

    Get PDF
    Vehicular emissions deteriorate air quality in urban areas notably. The aim of this study was to conduct an in-depth characterization of gaseous and particle emissions, and their potential to form secondary aerosol emissions, of the cars meeting the most recent emission Euro 6d standards, and to investigate the impact of fuel as well as engine and aftertreatment technologies on pollutants at warm and cold ambient temperatures. Studied vehicles were a diesel car with a diesel particulate filter (DPF), two gasoline cars (with and without a gasoline particulate filter (GPF)), and a car using compressed natural gas (CNG). The impact of fuel aromatic content was examined for the diesel car and the gasoline car without the GPF. The results showed that the utilization of exhaust particulate filter was important both in diesel and gasoline cars. The gasoline car without the GPF emitted relatively high concentrations of particles compared to the other technologies but the implementation of the GPF decreased particle emissions, and the potential to form secondary aerosols in atmospheric processes. The diesel car equipped with the DPF emitted low particle number concentrations except during the DPF regeneration events. Aromatic-free gasoline and diesel fuel efficiently reduced exhaust particles. Since the renewal of vehicle fleet is a relatively slow process, changing the fuel composition can be seen as a faster way to affect traffic emissions.Peer reviewe

    Lung-depositing surface area (LDSA) of particles in office spaces around Europe : Size distributions, I/O-ratios and infiltration

    Get PDF
    Air pollution, and specifically particulate matter pollution, is one of the greatest dangers to human health. Outdoor air pollution ranks third in causes for premature death. Improving indoor air quality is of immense importance, as the time spent indoors is often much greater than the time spent outdoors. In this experimental study, we evaluate the levels of particle pollution in indoor air in four offices across Europe, compare the indoor particles to outdoor particles and assess where the particles originate from. The measurements were conducted with an Electrical Low-Pressure Impactor (ELPI+) for particles between 6 nm and 1 ÎŒm. The chosen metric, lung-deposited particle surface area (LDSA), targets the health impacts of particle pollution. Based on the measurements, we determined that most of the indoor air particles infiltrated from outdoor air, although two of the offices had very limited indoor activity during the measurement campaigns and may not represent typical use. The highest median indoor LDSA concentration during daytime hours was 27.2 ÎŒm2/cm3, whereas the lowest was 2.8 ÎŒm2/cm3. Indoor air in general had lower LDSA concentrations than outdoor air, the corresponding outdoor LDSA concentrations being 35.8 ÎŒm2/cm3 and 9.8 ÎŒm2/cm3. The particle size ranges which contributed to the highest concentrations were 50–100 nm and 300–500 nm. These size ranges correspond to soot mode and accumulation mode particles, which represent local and regional sources, respectively. Based on this study, limiting particle infiltration is the key factor in keeping indoor air in offices free of lung-depositing particles.Peer reviewe

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Comprehensive characterization of wintertime submicron aerosol in a Nordic town influenced by residential wood combustion, traffic and industrial sources

    No full text
    Anthropogenic particulate matter with sizes smaller than 1 ÎŒm (PM1) is a concerning air pollutant that can affect human health. In this study, we present PM1 measurements performed in a small town in northern Finland that is exposed to contrasting sources (residential wood burning, traffic, industrial activities). The study was conducted in winter 2021, with a mobile laboratory equipped with sophisticated on-line aerosol instrumentation. The results showed a significant increase in particulate mass and number concentrations from biomass burning in residential areas and town centre due to the high share of residences using biomass burning. Organics and equivalent black carbon (eBC) clearly dominated the PM1 composition during the highest pollution levels, followed by inorganics (sulfate, nitrate and ammonium). PAHs and a few elements (e.g. K, Cl, Zn) were as well higher during evening. A source apportionment confirmed the association between high PM1 values and biomass burning, even though the traffic contribution was also important. PM1 measurements at an industrial area showed an increase in sulfate, organics, eBC, and a few elements (e.g. Cl, Na, Fe), and characteristic size distributions. Simultaneous measurements of lung deposited surface area (LDSA) of particles showed the sourcespecificity of biomass burning, traffic and industrial emissions on LSDA size distributions. Overall, the results enlighten the impact of relevant pollution sources on Nordic towns air quality during the coldest months and show the importance to also consider the chemical composition, particle numbers, and LDSA in future air quality metrics

    Snapshots of wintertime urban aerosol characteristics : local sources emphasized in ultrafine particle number and lung deposited surface area

    Get PDF
    Urban air fine particles are a major health-relating problem. However, it is not well understood how the healthrelevant features of fine particles should be monitored. Limitations of PM2.5 (mass concentration of sub 2.5 ÎŒm particles), which is commonly used in the health effect estimations, have been recognized and, e.g., World Health Organization (WHO) has released good practice statements for particle number (PN) and black carbon (BC) concentrations (2021). In this study, a characterization of urban wintertime aerosol was done in three environments: a detached housing area with residential wood combustion, traffic-influenced streets in a city centre and near an airport. The particle characteristics varied significantly between the locations, resulting different average particle sizes causing lung deposited surface area (LDSA). Near the airport, departing planes had a major contribution on PN, and most particles were smaller than 10 nm, similarly as in the city centre. The high hourly mean PN (>20 000 1/cm3) stated in the WHO’s good practices was clearly exceeded near the airport and in the city centre, even though traffic rates were reduced due to a SARS-CoV-2-related partial lockdown. In the residential area, wood combustion increased both BC and PM2.5, but also PN of sub 10 and 23 nm particles. The high concentrations of sub 10 nm particles in all the locations show the importance of the chosen lower size limit of PN measurement, e.g., WHO states that the lower limit should be 10 nm or smaller. Furthermore, due to ultrafine particle emissions, LDSA per unit PM2.5 was 1.4 and 2.4 times higher near the airport than in the city centre and the residential area, respectively, indicating that health effects of PM2.5 depend on urban environment as well as conditions, and emphasizing the importance of PN monitoring in terms of health effects related to local pollution sources

    Suitability of different methods for measuring black carbon emissions from marine engines

    Get PDF
    Black carbon (BC) emissions intensify global warming and are linked to adverse health effects. The International Maritime Organization (IMO) considers the impact of BC emissions from international shipping. A prerequisite for the anticipated limits to BC emissions from marine engines is a reliable measurement method. The three candidate methods (photoacoustic spectroscopy (PAS), laser-induced incandescence (LII), and filter smoke number (FSN)) selected by the IMO were evaluated with extensive ship exhaust matrices obtained by different fuels, engines, and emission control devices. A few instruments targeted for atmospheric measurements were included as well. The BC concentrations were close to each other with the smoke meters (AVL 415S and 415SE), PAS (AVL MSS), LII (Artium-300), MAAP 5012, aethalometers (Magee AE-33 and AE-42), and EC (TOA). In most cases, the standard deviation between instruments was in the range of 5–15% at BC concentrations below 30 mg Sm−3. Some differences in the BC concentrations measured with these instruments were potentially related to the ratio of light-absorbing compounds to sulphates or to particle sizes and morphologies. In addition, calibrations, sampling, and correction of thermophoretic loss of BC explained differences in the BC results. However, overall differences in the BC results obtained with three candidate methods selected by the IMO were low despite challenging exhaust compositions from marine diesel engines. Findings will inform decision making on BC emission control from marine engines.publishedVersionPeer reviewe

    Black carbon instrument responses to laboratory generated particles

    Get PDF
    Accurate measurement of black carbon (BC) particles is vital for climate models as well as air quality assessments. While the need for BC particle measurement has been recognized, standardization of instruments and procedures for ambient measurement is still underway. In this study, we used laboratory generated soot particles to assess nine instruments targeting BC mass concentration measurement. The measurement matrix included different BC concentrations (ranging from atmospheric levels to combustion emission levels), different particle coatings, two particle sources (gas burner and spark generator) and two dilution methods. The nine instruments included six different models: aethalometers AE33 and MA200, thermo-optical OC-EC analysis, multi-angle absorption photometer MAAP 5012, photoacoustic instrument MSS, and soot particle aerosol mass spectrometer SP-AMS. The main discrepancy we observed was that the SP-AMS results were systematically lower, approximately only half of the BC measured by other instruments. A portion of this is explained by particle losses in the aerodynamic lens of the SP-AMS and the parameters used in the data analysis. Some smaller discrepancies were identified for the other instruments, but overall, the median values from were within 25 % of each other. Instruments’ operation principles and covered concentration ranges need to be carefully considered especially in emission measurements where the aerosols can have high temporal variation as well as high BC concentrations. In general, the results can decrease the uncertainties in climate and air quality studies by providing tools for more accurate and comparable BC measurements and when the existing BC data is interpreted

    Particle lung deposited surface area (LDSAal) size distributions in different urban environments and geographical regions: Towards understanding of the PM2.5 dose–response

    Get PDF
    Recent studies indicate that monitoring only fine particulate matter (PM2.5) may not be enough to understand and tackle the health risk caused by particulate pollution. Health effects per unit PM2.5 seem to increase in countries with low PM2.5, but also near local pollution sources (e.g., traffic) within cities. The aim of this study is to understand the differences in the characteristics of lung-depositing particles in different geographical regions and urban environments. Particle lung deposited surface area (LDSAal) concentrations and size distributions, along with PM2.5, were compared with ambient measurement data from Finland, Germany, Czechia, Chile, and India, covering traffic sites, residential areas, airports, shipping, and industrial sites. In Finland (low PM2.5), LDSAal size distributions depended significantly on the urban environment and were mainly attributable to ultrafine particles (<100 nm). In Central Europe (moderate PM2.5), LDSAal was also dependent on the urban environment, but furthermore heavily influenced by the regional aerosol. In Chile and India (high PM2.5), LDSAal was mostly contributed by the regional aerosol despite that the measurements were done at busy traffic sites. The results indicate that the characteristics of lung-depositing particles vary significantly both within cities and between geographical regions. In addition, ratio between LDSAal and PM2.5 depended notably on the environment and the country, suggesting that LDSAal exposure per unit PM2.5 may be multiple times higher in areas having low PM2.5 compared to areas with continuously high PM2.5. These findings may partly explain why PM2.5 seems more toxic near local pollution sources and in areas with low PM2.5. Furthermore, performance of a typical sensor based LDSAal measurement is discussed and a new LDSAal2.5 notation indicating deposition region and particle size range is introduced. Overall, the study emphasizes the need for country-specific emission mitigation strategies, and the potential of LDSAal concentration as a health-relevant pollution metric

    State of the climate in 2015

    No full text
    In 2015, the dominant greenhouse gases released into Earth\u2019s atmosphere\u2014carbon dioxide, methane, and nitrous oxide\u2014all continued to reach new high levels. At Mauna Loa, Hawaii, the annual CO2 concentration increased by a record 3.1 ppm, exceeding 400 ppm for the first time on record. The 2015 global CO2 average neared this threshold, at 399.4 ppm. Additionally, one of the strongest El Ni\uf1o events since at least 1950 developed in spring 2015 and continued to evolve through the year. The phenomenon was far reaching, impacting many regions across the globe and affecting most aspects of the climate system. Owing to the combination of El Ni\uf1o and a long-term upward trend, Earth observed record warmth for the second consecutive year, with the 2015 annual global surface temperature surpassing the previous record by more than 0.1\ub0C and exceeding the average for the mid- to late 19th century\u2014commonly considered representative of preindustrial conditions\u2014by more than 1\ub0C for the first time. Above Earth\u2019s surface, lower troposphere temperatures were near-record high. Across land surfaces, record to near-record warmth was reported across every inhabited continent. Twelve countries, including Russia and China, reported record high annual temperatures. In June, one of the most severe heat waves since 1980 affected Karachi, Pakistan, claiming over 1000 lives. On 27 October, Vredendal, South Africa, reached 48.4\ub0C, a new global high temperature record for this month. In the Arctic, the 2015 land surface temperature was 1.2\ub0C above the 1981\u20132010 average, tying 2007 and 2011 for the highest annual temperature and representing a 2.8\ub0C increase since the record began in 1900. Increasing temperatures have led to decreasing Arctic sea ice extent and thickness. On 25 February 2015, the lowest maximum sea ice extent in the 37-year satellite record was observed, 7% below the 1981\u20132010 average. Mean sea surface temperatures across the Arctic Ocean during August in ice-free regions, representative of Arctic Ocean summer anomalies, ranged from ~0\ub0C to 8\ub0C above average. As a consequence of sea ice retreat and warming oceans, vast walrus herds in the Pacific Arctic are hauling out on land rather than on sea ice, raising concern about the energetics of females and young animals. Increasing temperatures in the Barents Sea are linked to a community-wide shift in fish populations: boreal communities are now farther north, and long-standing Arctic species have been almost pushed out of the area. Above average sea surface temperatures are not confined to the Arctic. Sea surface temperature for 2015 was record high at the global scale; however, the North Atlantic southeast of Greenland remained colder than average and colder than 2014. Global annual ocean heat content and mean sea level also reached new record highs. The Greenland Ice Sheet, with the capacity to contribute ~7 m to sea level rise, experienced melting over more than 50% of its surface for the first time since the record melt of 2012. Other aspects of the cryosphere were remarkable. Alpine glacier retreat continued, and preliminary data indicate that 2015 is the 36th consecutive year of negative annual mass balance. Across the Northern Hemisphere, late-spring snow cover extent continued its trend of decline, with June the second lowest in the 49-year satellite record. Below the surface, record high temperatures at 20-m depth were measured at all permafrost observatories on the North Slope of Alaska, increasing by up to 0.66\ub0C decade\u20131 since 2000. In the Antarctic, surface pressure and temperatures were lower than the 1981\u20132010 average for most of the year, consistent with the primarily positive southern annular mode, which saw a record high index value of +4.92 in February. Antarctic sea ice extent and area had large intra-annual variability, with a shift from record high levels in May to record low levels in August. Springtime ozone depletion resulted in one of the largest and most persistent Antarctic ozone holes observed since the 1990s. Closer to the equator, 101 named tropical storms were observed in 2015, well above the 1981\u20132010 average of 82. The eastern/central Pacific had 26 named storms, the most since 1992. The western north Pacific and north and south Indian Ocean basins also saw high activity. Globally, eight tropical cyclones reached the Saffir\u2013Simpson Category 5 intensity level. Overlaying a general increase in the hydrologic cycle, the strong El Ni\uf1o enhanced precipitation variability around the world. An above-normal rainy season led to major floods in Paraguay, Bolivia, and southern Brazil. In May, the United States recorded its all-time wettest month in its 121-year national record. Denmark and Norway reported their second and third wettest year on record, respectively, but globally soil moisture was below average, terrestrial groundwater storage was the lowest in the 14-year record, and areas in \u201csevere\u201d drought rose from 8% in 2014 to 14% in 2015. Drought conditions prevailed across many Caribbean island nations, Colombia, Venezuela, and northeast Brazil for most of the year. Several South Pacific countries also experienced drought. Lack of rainfall across Ethiopia led to its worst drought in decades and affected millions of people, while prolonged drought in South Africa severely affected agricultural production. Indian summer monsoon rainfall was just 86% of average. Extremely dry conditions in Indonesia resulted in intense and widespread fires during August\u2013November that produced abundant carbonaceous aerosols, carbon monoxide, and ozone. Overall, emissions from tropical Asian biomass burning in 2015 were almost three times the 2001\u201314 average

    State of the climate in 2016

    No full text
    corecore