25 research outputs found

    Contrasting the phospholipid profiles of two neoplastic cell lines reveal a high PC:PE ratio for SH-SY5Y cells relative to A431 cells

    Get PDF
    Lipids have been implicated in Parkinson's Disease (PD). We therefore studied the lipid profile of the neuroblastoma SH-SY5Y cell line, which is used extensively in PD research and compared it to that of the A431 epithelial cancer cell line. We have isolated whole cell extracts (WC) and plasma membrane (PM) fractions of both cell lines. The isolates were analyzed with 31P NMR. We observed a significant higher abundance of phosphatidylcholine (PC) for SH-SY5Y cells for both WC (55 ± 4.1%) and PM (63.3 ± 3.1%) compared to WC (40.5 ± 2.2%) and PM (43.4 ± 1.3%) of A431. Moreover, a higher abundance of phosphatidylethanolamine was detected for the WC of A431 compared to the SH-SY5Y. Using LC-MS/MS, we also determined the relative abundance of fatty acid (FA) moieties for each phospholipid class, finding that SH-SY5Y had high polyunsaturated FA levels, including arachidonic acid compared to A431 cells. When comparing our results to reported compositions of brain and neural tissues, we note the much higher PC levels, as well as very low levels of docosahexaenoic acid. However, relative levels of arachidonic acid and other polyunsaturated fatty acids were elevated, in line with what is desirable for a neural model system

    Cholesterol-containing lipid nanodiscs promote an α-synuclein binding mode that accelerates oligomerization

    Get PDF
    Dysregulation of the biosynthesis of cholesterol and other lipids has been implicated in many neurological diseases, including Parkinson's disease. Misfolding of α-synuclein (α-Syn), the main actor in Parkinson's disease, is associated with changes in a lipid environment. However, the exact molecular mechanisms underlying cholesterol effect on α-Syn binding to lipids as well as α-Syn oligomerization and fibrillation remain elusive, as does the relative importance of cholesterol compared to other factors. We probed the interactions and fibrillation behaviour of α-Syn using styrene–maleic acid nanodiscs, containing zwitterionic and anionic lipid model systems with and without cholesterol. Surface plasmon resonance and thioflavin T fluorescence assays were employed to monitor α-Syn binding, as well as fibrillation in the absence and presence of membrane models. 1H-15N-correlated NMR was used to monitor the fold of α-Syn in response to nanodisc binding, determining individual residue apparent affinities for the nanodisc-contained bilayers. The addition of cholesterol inhibited α-Syn interaction with lipid bilayers and, however, significantly promoted α-Syn fibrillation, with a more than a 20-fold reduction of lag times before fibrillation onset. When α-Syn bilayer interactions were analysed at an individual residue level by solution-state NMR, we observed two different effects of cholesterol. In nanodiscs made of DOPC, the addition of cholesterol modulated the NAC part of α-Syn, leading to stronger interaction of this region with the lipid bilayer. In contrast, in the nanodiscs comprising DOPC, DOPE and DOPG, the NAC part was mostly unaffected by the presence of cholesterol, while the binding of the N and the C termini was both inhibited.publishedVersio

    A systematic study on Pt based, subnanometer-sized alloy cluster catalysts for alkane dehydrogenation: effects of intermetallic interaction

    Get PDF
    Platinum-based bimetallic nanoparticles are analyzed by the application of density functional theory to a series of tetrahedral Pt3X cluster models, with element X taken from the P-block, preferably group 14, or from the D-block around group 10. Almost identical cluster geometries allow a systematic investigation of electronic effects induced by different elements X. Choosing the propane-to-propene conversion as the desired dehydrogenation reaction, we provide estimates for the activity and selectivity of the various catalysts based on transition state theory. No significant Brønsted-Evans-Polanyi-relation could be found for the given reaction. A new descriptor, derived from an energy decomposition analysis, captures the effect of element X on the rate-determining step of the first hydrogen abstraction. Higher activities than obtained for pure Pt4 clusters are predicted for Pt alloys containing Ir, Sn, Ge and Si, with Pt3Ir showing particularly high selectivity

    Fast and Quantitative Phospholipidomic Analysis of SH-SY5Y Neuroblastoma Cell Cultures Using LC-MS/MS and 31P NMR

    No full text
    Global lipid analysis still lags behind proteomics with respect to the availability of databases, experimental protocols, and specialized software. Determining the lipidome of cellular model systems in common use is of particular importance, especially when research questions involve lipids directly. In Parkinson’s disease research, there is a growing awareness for the role of the biological membrane, where individual lipids may contribute to provoking α-synuclein oligomerisation and fibrillation. We present an analysis of the whole cell and plasma membrane lipid isolates of a neuroblastoma cell line, SH-SY5Y, a commonly used model system for research on this and other neurodegenerative diseases. We have used two complementary lipidomics methods. The relative quantities of PC, PE, SMs, CL, PI, PG, and PS were determined by 31P NMR. Fatty acid chain composition and their relative abundances within each phospholipid group were evaluated by liquid chromatography–tandem mass spectrometry. For this part of the analysis, we have developed and made available a set of Matlab scripts, LipMat. Our approach allowed us to observe several deviations of lipid abundances when compared to published reports regarding phospholipid analysis of cell cultures or brain matter. The most striking was the high abundance of PC (54.7 ± 1.9%) and low abundance of PE (17.8 ± 4.8%) and SMs (2.7 ± 1.2%). In addition, the observed abundance of PS was smaller than expected (4.7 ± 2.7%), similar to the observed abundance of PG (4.5 ± 1.8%). The observed fatty acid chain distribution was similar to the whole brain content with some notable differences: a higher abundance of 16:1 PC FA (17.4 ± 3.4% in PC whole cell content), lower abundance of 22:6 PE FA (15.9 ± 2.2% in plasma membrane fraction), and a complete lack of 22:6 PS FA.publishedVersio

    Kinetics of propane dehydrogenation over Pt-Sn/Al2O3

    No full text
    <p>The kinetics of the gas-phase dehydrogenation of propane over Pt-Sn (1 : 1 mol ratio) supported on Al2O3 was investigated for the first time over the high range of reactant/products partial pressures (up to 0.875 atm). The Pt precursor was reduced to metallic form after a temperature-programmed reduction (TPR) at 873 K. X-ray photoelectron spectroscopy (XPS) analysis suggests that a Pt-Sn surface alloy forms, decreasing the H-2 adsorption on the Pt-Sn sites (5.6 nm in average size) relative to monometallic Pt (6.8 nm). We performed kinetic studies in the absence of mass/heat transfer limitations. The incorporation of Sn into Pt in Pt-Sn/Al2O3 enhanced the catalytic activity and stability when compared to Pt/Al2O3. We attribute this response to the surface electronic interaction between Pt and Sn. The initial propane consumption rate increases with the partial pressure of propane and decreases with the partial pressure of propene, while varying that of hydrogen has a negligible effect. Applying the Langmuir-Hinshelwood-Hougen-Watson (LHHW) approach, the most likely kinetic model is non-dissociative adsorption of propane with simultaneous release of H-2, where surface reaction is the rate-limiting step. Our results of the kinetic aspects provide practical insights relevant to propane dehydrogenation.</p>
    corecore