57 research outputs found

    Pomegranate inhibits neuroinflammation and amyloidogenesis in IL-1β stimulated SK-N-SH cells

    Get PDF
    Purpose: Pomegranate fruit, Punica granatum L. (Punicaceae) and its constituents have been shown to inhibit inflammation. In this study we aimed to assess the effects of freeze-dried pomegranate (PWE) on PGE2 production in IL-1β stimulated SK-N-SH cells. Methods: An enzyme immuno assay (EIA) was used to measure prostaglandin E2 (PGE2) production from supernatants of IL-1β stimulated SK-N-SH cells. Expression of COX-2, phospho-IκB and phospho-IKK proteins were evaluated, while NF-κB reporter gene assay was carried out in TNFα-stimulated HEK293 cells to determine the effect of PWE on NF-κB transactivation. Levels of BACE-1 and Aβ in SK-N-SH cells stimulated with IL-1β were measured with an in cell ELISA. Results: PWE (25-200 µg/ml) dose dependently reduced COX-2 dependent PGE2 production in SK-N-SH cells stimulated with IL-1β. Phosphorylation of IκB and IKK were significantly (p<0.001) inhibited by PWE (50- 200 µg/ml). Our studies also show that PWE (50-200 µg/ml) significantly (p<0.01) inhibited NF-κB transactivation in TNFα-stimulated HEK293 cells. Furthermore PWE inhibited BACE-1 and Aβ expression in SK-N-SH cells treated with IL-1β. Conclusions: Taken together, our study demonstrates that pomegranate inhibits inflammation, as well as amyloidogenesis in IL-1β-stimulated SK-N-SH cells. We propose that pomegranate is a potential nutritional strategy in slowing the progression of neurodegenerative disorders like Alzheimer’s disease

    siRNA-Based Targeting of Cyclin E Overexpression Inhibits Breast Cancer Cell Growth and Suppresses Tumor Development in Breast Cancer Mouse Model

    Get PDF
    Cyclin E is aberrantly expressed in many types of cancer including breast cancer. High levels of the full length as well as the low molecular weight isoforms of cyclin E are associated with poor prognosis of breast cancer patients. Notably, cyclin E overexpression is also correlated with triple-negative basal-like breast cancers, which lack specific therapeutic targets. In this study, we used siRNA to target cyclin E overexpression and assessed its ability to suppress breast cancer growth in nude mice. Our results revealed that cyclin E siRNA could effectively inhibit overexpression of both full length and low molecular weight isoforms of cyclin E. We found that depletion of cyclin E promoted apoptosis of cyclin E-overexpressing cells and blocked their proliferation and transformation phenotypes. Significantly, we further demonstrated that administration of cyclin E siRNA could inhibit breast tumor growth in nude mice. In addition, we found that cyclin E siRNA synergistically enhanced the cell killing effects of doxorubicin in cell culture and this combination greatly suppressed the tumor growth in mice. In conclusion, our results indicate that cyclin E, which is overexpressed in 30% of breast cancer, may serve as a novel and effective therapeutic target. More importantly, our study clearly demonstrates a very promising therapeutic potential of cyclin E siRNA for treating the cyclin E-overexpressing breast cancers, including the very malignant triple-negative breast cancers

    Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms

    Get PDF
    Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration

    Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides

    Get PDF
    Acquisition of a mucoid phenotype by Pseudomonas sp. in the lungs of cystic fibrosis (CF) patients, with subsequent over-production of extracellular polymeric substance (EPS), plays an important role in mediating the persistence of multi-drug resistant (MDR) infections. The ability of a low molecular weight (Mn=3200 g mol-1) alginate oligomer (OligoG CF-5/20) to modify biofilm structure of mucoid Pseudomonas aeruginosa (NH57388A) was studied in vitro using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) with Texas Red (TxRd®)-labelled OligoG and EPS histochemical staining. Structural changes in treated biofilms were quantified using COMSTAT image-analysis software of CLSM z-stack images, and nanoparticle diffusion. Interactions between the oligomers, Ca2+ and DNA were studied using molecular dynamics simulations (MDS), Fourier transform infrared spectroscopy (FTIR) and isothermal titration calorimetry (ITC). Imaging demonstrated that OligoG treatment (&#62;0.5%) inhibited biofilm formation, demonstrating a significant reduction in both biomass and biofilm height (17.8 vs. 5.5 µm; P &#60;0.05). TxRd®-labelled oligomers readily diffused into established (24 h) biofilms. OligoG treatment (≥2%) induced alterations in the EPS of established biofilms; significantly reducing the structural quantities of sugar residues, and extracellular (e)DNA (P &#60;0.05) with a corresponding increase in nanoparticle diffusion (P&#60;0.05) and antibiotic efficacy against established biofilms. ITC demonstrated an absence of rapid complex formation between DNA and OligoG and confirmed the interactions of OligoG with Ca2+ evident in FTIR and MDS. The ability of OligoG to diffuse into biofilms, potentiate antibiotic activity, disrupt DNA-Ca2+-DNA bridges and biofilm EPS matrix highlights its potential for the treatment of biofilm-related infections

    The fate of mercury in Arctic terrestrial and aquatic ecosystems, a review

    Full text link
    • …
    corecore