294 research outputs found

    Interleukin 7 Receptor Control of  T Cell Receptor γ Gene Rearrangement: Role of Receptor-associated Chains and Locus Accessibility

    Get PDF
    VDJ recombination of T cell receptor and immunoglobulin loci occurs in immature lymphoid cells. Although the molecular mechanisms of DNA cleavage and ligation have become more clear, it is not understood what controls which target loci undergo rearrangement. In interleukin 7 receptor (IL-7R)α−/− murine thymocytes, it has been shown that rearrangement of the T cell receptor (TCR)-γ locus is virtually abrogated, whereas other rearranging loci are less severely affected. By examining different strains of mice with targeted mutations, we now observe that the signaling pathway leading from IL-7Rα to rearrangement of the TCR-γ locus requires the γc receptor chain and the γc-associated Janus kinase Jak3. Production of sterile transcripts from the TCR-γ locus, a process that generally precedes rearrangement of a locus, was greatly repressed in IL-7Rα−/− thymocytes. The repressed transcription was not due to a lack in transcription factors since the three transcription factors known to regulate this locus were readily detected in IL-7Rα−/− thymocytes. Instead, the TCR-γ locus was shown to be methylated in IL-7Rα−/− thymocytes. Treatment of IL-7Rα−/− precursor T cells with the specific histone deacetylase inhibitor trichostatin A released the block of TCR-γ gene rearrangement. This data supports the model that IL-7R promotes TCR-γ gene rearrangement by regulating accessibility of the locus via demethylation and histone acetylation of the locus

    CD28 and the Tyrosine Kinase Lck Stimulate Mitogen-Activated Protein Kinase Activity in T Cells via Inhibition of the Small G Protein Rap1

    Full text link
    Proliferation of T cells via activation of the T-cell receptor (TCR) requires concurrent engagement of accessory costimulatory molecules to achieve full activation. The best-studied costimulatory molecule, CD28, achieves these effects, in part, by augmenting signals from the TCR to the mitogen-activated protein (MAP) kinase cascade. We show here that TCR-mediated stimulation of MAP kinase extracellular-signal-regulated kinases (ERKs) is limited by activation of the Ras antagonist Rap1. CD28 increases ERK signaling by blocking Rap1 action. CD28 inhibits Rap1 activation because it selectively stimulates an extrinsic Rap1 GTPase activity. The ability of CD28 to stimulate Rap1 GTPase activity was dependent on the tyrosine kinase Lck. Our results suggest that CD28-mediated Rap1 GTPase-activating protein activation can help explain the augmentation of ERKs during CD28 costimulation

    C5 Palsy After Cervical Spine Surgery: A Multicenter Retrospective Review of 59 Cases.

    Get PDF
    STUDY DESIGN: A multicenter, retrospective review of C5 palsy after cervical spine surgery. OBJECTIVE: Postoperative C5 palsy is a known complication of cervical decompressive spinal surgery. The goal of this study was to review the incidence, patient characteristics, and outcome of C5 palsy in patients undergoing cervical spine surgery. METHODS: We conducted a multicenter, retrospective review of 13 946 patients across 21 centers who received cervical spine surgery (levels C2 to C7) between January 1, 2005, and December 31, 2011, inclusive. P values were calculated using 2-sample t test for continuous variables and χ(2) tests or Fisher exact tests for categorical variables. RESULTS: Of the 13 946 cases reviewed, 59 patients experienced a postoperative C5 palsy. The incidence rate across the 21 sites ranged from 0% to 2.5%. At most recent follow-up, 32 patients reported complete resolution of symptoms (54.2%), 15 had symptoms resolve with residual effects (25.4%), 10 patients did not recover (17.0%), and 2 were lost to follow-up (3.4%). CONCLUSION: C5 palsy occurred in all surgical approaches and across a variety of diagnoses. The majority of patients had full recovery or recovery with residual effects. This study represents the largest series of North American patients reviewed to date

    Vegetation management with fire modifies peatland soil thermal regime

    Get PDF
    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from <2 to 15+years post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15+years previously, plots recently burned (<2-4 years) showed higher mean, maximum and range of soil temperatures, and lower minima. Statistical models (generalised least square regression) were developed to predict daily mean and maximum soil temperature in plots burned 15+years prior to the study. These models were then applied to predict temperatures of plots burned 2, 4 and 7 years previously, with significant deviations from predicted temperatures illustrating the magnitude of burn management effects. Temperatures measured in soil plots burned <2 years previously showed significant statistical disturbances from model predictions, reaching+6.2°C for daily mean temperatures and+19.6°C for daily maxima. Soil temperatures in plots burnt 7 years previously were most similar to plots burned 15+years ago indicating the potential for soil temperatures to recover as vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Anthropometry, carbohydrate and lipid metabolism in the East Flanders Prospective Twin Survey: heritabilities

    Get PDF
    AIMS/HYPOTHESIS: We determined the genetic contribution of 18 anthropometric and metabolic risk factors of type 2 diabetes using a young healthy twin population. METHODS: Traits were measured in 240 monozygotic (MZ) and 138 dizygotic (DZ) twin pairs aged 18 to 34 years. Twins were recruited from the Belgian population-based East Flanders Prospective Twin Survey, which is characterised by its accurate zygosity determination and extensive collection of perinatal and placental data, including information on chorionicity. Heritability was estimated using structural equation modelling implemented in the Mx software package. RESULTS: Intra-pair correlations of the anthropometric and metabolic characteristics did not differ between MZ monochorionic and MZ dichorionic pairs; consequently heritabilities were estimated using the classical twin approach. For body mass, BMI and fat mass, quantitative sex differences were observed; genetic variance explained 84, 85 and 81% of the total variation in men and 74, 75 and 70% in women, respectively. Heritability estimates of the waist-to-hip ratio, sum of four skinfold thicknesses and lean body mass were 70, 74 and 81%, respectively. The heritability estimates of fasting glucose, fasting insulin, homeostasis model assessment of insulin resistance and beta cell function, as well as insulin-like growth factor binding protein-1 levels were 67, 49, 48, 62 and 47%, in that order. Finally, for total cholesterol, LDL-cholesterol, HDL-cholesterol, total cholesterol:HDL-cholesterol ratio, triacylglycerol, NEFA and leptin levels, genetic factors explained 75, 78, 76, 79, 58, 37 and 53% of the total variation, respectively. CONCLUSIONS/INTERPRETATION: Genetic factors explain the greater part of the variation in traits related to obesity, glucose intolerance/insulin resistance and dyslipidaemia

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    • …
    corecore