103 research outputs found

    Early search for supersymmetric dark matter models at the LHC without missing energy

    Full text link
    We investigate early discovery signals for supersymmetry at the Large Hadron Collider without using information about missing transverse energy. Instead we use cuts on the number of jets and isolated leptons (electrons and/or muons). We work with minimal supersymmetric extensions of the standard model, and focus on phenomenological models that give a relic density of dark matter compatible with the WMAP measurements. An important model property for early discovery is the presence of light sleptons, and we find that for an integrated luminosity of only 200--300 pb1^{-1} at a center-of-mass energy of 10 TeV models with gluino masses up to 700\sim 700 GeV can be tested.Comment: 28 pages, 12 figures; published versio

    Plant Community Response to Regional Sources of Dominant Grasses in Grasslands Restored Across a Longitudinal Gradient

    Get PDF
    Restorations in the light of climate change will need to take into account whether or not sources of the dominant plants are adapted to the future conditions at a site. In addition, the effect of these dominants, especially if sourced from outside the local area, on the assembling plant community needs assessment. We investigated how different ecotypes of the tallgrass prairie dominants Andropogon gerardii and Sorghastrum nutans affect assembling prairie communities. Four reciprocal common garden experiments were established across a longitudinal climate gradient characterized by a decrease in aridity in western Kansas (COLBY), central Kansas (HAYS), eastern Kansas (MANHATTAN), and southern Illinois (CARBONDALE). At each site, plots were seeded with ecotypes of A. gerardii and S. nutans sourced from central Kansas (CKS), eastern Kansas (EKS), southern Illinois (SIL), or a mix of all three regional ecotypes (MIX). All plots were also seeded with the same suite of seven subordinate species. Species composition was measured during the fourth year of restoration. The greatest variation between communities occurred at HAYS and CARBONDALE between plots seeded with CKS and SIL ecotypes. At these sites, plots seeded with the local source had the lowest diversity and cover of nondominant species. Compositional variation between plots seeded with different dominant grass ecotypes was found exclusively at CARBONDALE between CKS and SIL plots. Differences between locally seeded plots and plots seeded with a MIX of dominant grass ecotypes were contingent upon site. At CARBONDALE, MIX seeded plots had higher diversity than SIL ecotype plots. Our results indicate that across a wide geographic precipitation gradient, limited but important differences in community assembly occur in restorations established with different ecotypes of the dominant grasses. However, our results also support the use of mixtures of nonlocal ecotypes of dominant grasses in restorations without risk to the assembling plant community. Future studies need to determine the potential for out- breeding effects among seed sources in mixed stands

    Genetic and environmental influences on stomates of big bluestem (Andropogon gerardii)

    Get PDF
    Big bluestem (Andropogon gerardii) is a dominant C4 prairie grass that has wide distribution and several genetically distinct ecotypes. Many of the ecotypic adaptations are related to water availability in the native environment. Stomates facilitate photosynthetic gas exchange and regulate water loss from the plant. As such, stomatal size and density represent possible adaptations to conserve water. We hypothesized drought-tolerant ecotypes of big bluestem would have fewer or smaller stomates compared to more mesic ecotypes. Five ecotypes of big bluestem were planted in four common gardens from western Kansas to southern Illinois, USA to determine genetic and environmental influences on stomates. Leaves of all ecotypes of A. gerardii were largely hypostomatous and genetics was a greater influence than environment for stomatal size and density. The drought-tolerant Sand bluestem had larger stomates on abaxial surfaces of leaves, but a lower density compared to most other ecotypes. The most mesic Illinois ecotype and the Kaw cultivar had the greatest density of stomates on abaxial surfaces of leaves. Sand Bluestem had a greater density of stomates on adaxial surfaces of leaves compared to all other ecotypes. Gas exchange measures followed patterns of stomate distribution, where abaxial CO2 uptake rates were greater than adaxial CO2 uptake rates, although differences between leaf surfaces was more pronounced in stomatal density than in CO2 uptake. There were minor differences in size and density of stomates among sites that corresponded with precipitation, although these differences were minor, illustrating the genetic underpinnings of stomates in big bluestem. There is a genetic predisposition for drought-tolerant ecotypes to have fewer stomates, illustrating an evolutionary adaptation to drought tolerance in an important prairie species

    No effect of seed source on multiple aspects of ecosystem functioning during ecological restoration: cultivars compared to local ecotypes of dominant grasses

    Get PDF
    Genetic principles underlie recommendations to use local seed, but a paucity of information exists on the genetic distinction and ecological consequences of using different seed sources in restorations. We established a field experiment to test whether cultivars and local ecotypes of dominant prairie grasses were genetically distinct and differentially influenced ecosystem functioning. Whole plots were assigned to cultivar and local ecotype grass sources. Three subplots within each whole plot were seeded to unique pools of subordinate species. The cultivar of the increasingly dominant grass, Sorghastrum nutans, was genetically different than the local ecotype, but genetic diversity was similar between the two sources. There were no differences in aboveground net primary production, soil carbon accrual, and net nitrogen mineralization rate in soil between the grass sources. Comparable productivity of the grass sources among the species pools for four years shows functional equivalence in terms of biomass production. Subordinate species comprised over half the aboveground productivity, which may have diluted the potential for documented trait differences between the grass sources to influence ecosystem processes. Regionally developed cultivars may be a suitable alternative to local ecotypes for restoration in fragmented landscapes with limited gene flow between natural and restored prairie and negligible recruitment by seed

    Environmental heterogeneity has a weak effect on diversity during community assembly in tallgrass prairie

    Get PDF
    Citation: Baer, S. G., Blair, J. M., & Collins, S. L. (2016). Environmental heterogeneity has a weak effect on diversity during community assembly in tallgrass prairie. Ecological Monographs, 86(1), 94-106. doi:10.1890/15-0888.1Understanding what constrains the persistence of species in communities is at the heart of community assembly theory and its application to conserving and enhancing biodiversity. The "environmental heterogeneity hypothesis" predicts greater species coexistence in habitats with greater resource variability. In the context of community assembly, environmental heterogeneity may influence the variety and strength of abiotic conditions and competitive interactions (environmental filters) to affect the relative abundance of species and biodiversity. We manipulated key resources that influence plant diversity in tallgrass prairie (i.e., soil depth and nitrogen availability) to increase environmental heterogeneity prior to sowing native prairie species into a former agricultural field. We compared variability in nutrient availability, aboveground annual net primary productivity (ANPP), and the composition of species between replicate plots containing soil heterogeneity manipulations and plots with no resource manipulations (n = 4 per treatment) during the first 15 yr of community assembly as a test of the "environmental heterogeneity hypothesis." The manipulations increased environmental heterogeneity, measured as the coefficient of variation in NO3-N availability and ANPP. Plant diversity, however, was similar and decayed exponentially and indiscriminately over time between the heterogeneity treatments. Species richness declined linearly over time in both heterogeneity treatments, but richness was higher in the more heterogeneous soil 2 yr following a second propagule addition 8 yr after the initial sowing. As a result, there was a lower rate of species loss over time in the more heterogeneous soil (0.60 species yr(-1)) relative to the control soil (0.96 species yr(-1)). Communities in each treatment exhibited strong convergence over time resulting from a shift in dominant species across all treatments and a gradual increase in the clonal C-4 grass, Andropogon gerardii. We attribute the weak effect of heterogeneity on diversity to increasing dominance of a clonal species, which decreased the scale of soil treatments relative to plant size, dispersal limitation, and absence of a key driver (grazing) known to increase plant diversity under a frequent fire regime. Thus, steering community assembly to attain high biodiversity may depend more on manipulating processes that reduce dominance and facilitate the arrival of new species than promoting environmental heterogeneity

    Patterns and trends of organic matter processing and transport: Insights from the US long-term ecological research network

    Get PDF
    Organic matter (OM) dynamics determine how much carbon is stored in ecosystems, a service that modulates climate. We synthesized research from across the US Long-Term Ecological Research (LTER) Network to assemble a conceptual model of OM dynamics that is consistent with inter-disciplinary perspectives and emphasizes vulnerability of OM pools to disturbance. Guided by this conceptual model, we identified unanticipated patterns and long-term trends in processing and transport of OM emerging from terrestrial, freshwater, wetland, and marine ecosystems. Cross-ecosystem synthesis combined with a survey of researchers revealed several themes: 1) strong effects of climate change on OM dynamics, 2) surprising patterns in OM storage and dynamics resulting from coupling with nutrients, 3) characteristic and often complex legacies of land use and disturbance, 4) a significant role of OM transport that is often overlooked in terrestrial ecosystems, and 5) prospects for reducing uncertainty in forecasting OM dynamics by incorporating the chemical composition of OM. Cross-fertilization of perspectives and approaches across LTER sites and other research networks can stimulate the comprehensive understanding required to support large-scale characterizations of OM budgets and the role of ecosystems in regulating global climate

    SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0

    Get PDF
    Data collected from research networks present opportunities to test theories and develop models about factors responsible for the long-term persistence and vulnerability of soil organic matter (SOM). Synthesizing datasets collected by different research networks presents opportunities to expand the ecological gradients and scientific breadth of information available for inquiry. Synthesizing these data is challenging, especially considering the legacy of soil data that have already been collected and an expansion of new network science initiatives. To facilitate this effort, here we present the SOils DAta Harmonization database (SoDaH; https://lter.github.io/som-website, last access: 22 December 2020), a flexible database designed to harmonize diverse SOM datasets from multiple research networks. SoDaH is built on several network science efforts in the United States, but the tools built for SoDaH aim to provide an open-access resource to facilitate synthesis of soil carbon data. Moreover, SoDaH allows for individual locations to contribute results from experimental manipulations, repeated measurements from long-term studies, and local- to regional-scale gradients across ecosystems or landscapes. Finally, we also provide data visualization and analysis tools that can be used to query and analyze the aggregated database. The SoDaH v1.0 dataset is archived and available at https://doi.org/10.6073/pasta/9733f6b6d2ffd12bf126dc36a763e0b4 (Wieder et al., 2020)

    PI3Kγ is a molecular switch that controls immune suppression

    Get PDF
    Macrophages play critical, but opposite, roles in acute and chronic inflammation and cancer1,2,3,4,5. In response to pathogens or injury, inflammatory macrophages express cytokines that stimulate cytotoxic T cells, whereas macrophages in neoplastic and parasitic diseases express anti-inflammatory cytokines that induce immune suppression and may promote resistance to T cell checkpoint inhibitors1,2,3,4,5,6,7. Here we show that macrophage PI 3-kinase γ controls a critical switch between immune stimulation and suppression during inflammation and cancer. PI3Kγ signalling through Akt and mTor inhibits NFκB activation while stimulating C/EBPβ activation, thereby inducing a transcriptional program that promotes immune suppression during inflammation and tumour growth. By contrast, selective inactivation of macrophage PI3Kγ stimulates and prolongs NFκB activation and inhibits C/EBPβ activation, thus promoting an immunostimulatory transcriptional program that restores CD8+ T cell activation and cytotoxicity. PI3Kγ synergizes with checkpoint inhibitor therapy to promote tumour regression and increased survival in mouse models of cancer. In addition, PI3Kγ-directed, anti-inflammatory gene expression can predict survival probability in cancer patients. Our work thus demonstrates that therapeutic targeting of intracellular signalling pathways that regulate the switch between macrophage polarization states can control immune suppression in cancer and other disorders

    Spatially restricted drivers and transitional cell populations cooperate with the microenvironment in untreated and chemo-resistant pancreatic cancer

    Get PDF
    Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease
    corecore