75 research outputs found
A review of Monte Carlo simulations of polymers with PERM
In this review, we describe applications of the pruned-enriched Rosenbluth
method (PERM), a sequential Monte Carlo algorithm with resampling, to various
problems in polymer physics. PERM produces samples according to any given
prescribed weight distribution, by growing configurations step by step with
controlled bias, and correcting "bad" configurations by "population control".
The latter is implemented, in contrast to other population based algorithms
like e.g. genetic algorithms, by depth-first recursion which avoids storing all
members of the population at the same time in computer memory. The problems we
discuss all concern single polymers (with one exception), but under various
conditions: Homopolymers in good solvents and at the point, semi-stiff
polymers, polymers in confining geometries, stretched polymers undergoing a
forced globule-linear transition, star polymers, bottle brushes, lattice
animals as a model for randomly branched polymers, DNA melting, and finally --
as the only system at low temperatures, lattice heteropolymers as simple models
for protein folding. PERM is for some of these problems the method of choice,
but it can also fail. We discuss how to recognize when a result is reliable,
and we discuss also some types of bias that can be crucial in guiding the
growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011
Measurement of CP observables in B± â D(â)K± and B± â D(â)ϱ decays
Measurements of CP observables in B ± âD (â) K ± and B ± âD (â) Ï Â± decays are presented, where D (â) indicates a neutral D or D â meson that is an admixture of D (â)0 and DÂŻ (â)0 states. Decays of the D â meson to the DÏ 0 and DÎł final states are partially reconstructed without inclusion of the neutral pion or photon, resulting in distinctive shapes in the B candidate invariant mass distribution. Decays of the D meson are fully reconstructed in the K ± Ï â , K + K â and Ï + Ï â final states. The analysis uses a sample of charged B mesons produced in pp collisions collected by the LHCb experiment, corresponding to an integrated luminosity of 2.0, 1.0 and 2.0 fb â1 taken at centre-of-mass energies of s=7, 8 and 13 TeV, respectively. The study of B ± âD â K ± and B ± âD â Ï Â± decays using a partial reconstruction method is the first of its kind, while the measurement of B ± âDK ± and B ± âDÏ Â± decays is an update of previous LHCb measurements. The B ± âDK ± results are the most precise to date
First observation of forward production in collisions at TeV
The decay ZâbbÂŻ is reconstructed in pp collision data, corresponding to 2 fb â1 of integrated luminosity, collected by the LHCb experiment at a centre-of-mass energy of s=8 TeV. The product of the Z production cross-section and the ZâbbÂŻ branching fraction is measured for candidates in the fiducial region defined by two particle-level b -quark jets with pseudorapidities in the range 2.220 GeV and dijet invariant mass in the range 452045 < m_{jj} < 1655462 \pm 763Z \rightarrow b \bar{b}332 \pm 46 \pm 59Z \rightarrow b \bar{b}pp$ collisions
The Ciliopathy Protein CC2D2A Associates with NINL and Functions in RAB8-MICAL3-Regulated Vesicle Trafficking
Contains fulltext :
152797.PDF (publisher's version ) (Open Access)Ciliopathies are a group of human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in transduction of extra-cellular signals to the cell. This function requires the concentration of receptors and channels in the ciliary membrane, which is achieved by complex trafficking mechanisms, in part controlled by the small GTPase RAB8, and by sorting at the transition zone located at the entrance of the ciliary compartment. Mutations in the transition zone gene CC2D2A cause the related Joubert and Meckel syndromes, two typical ciliopathies characterized by central nervous system malformations, and result in loss of ciliary localization of multiple proteins in various models. The precise mechanisms by which CC2D2A and other transition zone proteins control protein entrance into the cilium and how they are linked to vesicular trafficking of incoming cargo remain largely unknown. In this work, we identify the centrosomal protein NINL as a physical interaction partner of CC2D2A. NINL partially co-localizes with CC2D2A at the base of cilia and ninl knockdown in zebrafish leads to photoreceptor outer segment loss, mislocalization of opsins and vesicle accumulation, similar to cc2d2a-/- phenotypes. Moreover, partial ninl knockdown in cc2d2a-/- embryos enhances the retinal phenotype of the mutants, indicating a genetic interaction in vivo, for which an illustration is found in patients from a Joubert Syndrome cohort. Similar to zebrafish cc2d2a mutants, ninl morphants display altered Rab8a localization. Further exploration of the NINL-associated interactome identifies MICAL3, a protein known to interact with Rab8 and to play an important role in vesicle docking and fusion. Together, these data support a model where CC2D2A associates with NINL to provide a docking point for cilia-directed cargo vesicles, suggesting a mechanism by which transition zone proteins can control the protein content of the ciliary compartment
NINL and DZANK1 Co-function in Vesicle Transport and Are Essential for Photoreceptor Development in Zebrafish
Contains fulltext :
151728.pdf (publisher's version ) (Open Access
- âŠ