145 research outputs found
Cognitive performance of young and elderly subjects on the free word recall memory test: effect of presentation order on recall order
The influence of aging on memory has been extensively studied, but the importance of short-term memory and recall sequence has not. The objective of the current study was to examine the recall order of words presented on lists and to determine if age affects recall sequence. Physically and psychologically healthy male subjects were divided into two groups according to age, i.e., 23 young subjects (20 to 30 years) and 50 elderly subjects (60 to 70 years) submitted to the Wechsler Adult Intelligence Scale-Revised and the free word recall test. The order of word presentation significantly affected the 3rd and 4th words recalled (P < 0.01; F = 14.6). In addition, there was interaction between the presentation order and the type of list presented (P < 0.05; F = 9.7). Also, both groups recalled the last words presented from each list (words 13-15) significantly more times 3rd and 4th than words presented in all remaining positions (P < 0.01). The order of word presentation also significantly affected the 5th and 6th words recalled (P = 0.05; F = 7.5) and there was a significant interaction between the order of presentation and the type of list presented (P < 0.01; F = 20.8). The more developed the cognitive functions, resulting mainly from formal education, the greater the cognitive reserve, helping to minimize the effects of aging on the long-term memory (episodic declarative).Associação Fundo de Incentivo à Psicofarmacologia Instituto do SonoUniversidade Federal de São Paulo (UNIFESP) Departamento de PsicobiologiaUNIFESP, Depto. de PsicobiologiaSciEL
The Position of High Frequency Waves with Respect to the Granulation Pattern
High frequency velocity oscillations were observed in the spectral lines Fe I
543.45nm and 543.29nm, using 2D spectroscopy with a Fabry- Perot and speckle
reconstruction, at the VTT in Tenerife. We investigate the radial component of
waves with frequencies in the range 8 - 22mHz in the internetwork, network and
a pore. We find that the occurrence of waves do not show any preference on
location and are equally distributed over down-flows and up-flows, regardless
of the activity of the observed area in the line of Fe I 543.45nm. The waves
observed in the lower formed line of Fe I 543.29nm seem to appear
preferentially over down-flows.Comment: Article has 12 pages and 7 images. It is accepted in Solar Physics
Journa
Multiscale magnetic underdense regions on the solar surface: Granular and Mesogranular scales
The Sun is a non-equilibrium dissipative system subjected to an energy flow
which originates in its core. Convective overshooting motions create
temperature and velocity structures which show a temporal and spatial
evolution. As a result, photospheric structures are generally considered to be
the direct manifestation of convective plasma motions. The plasma flows on the
photosphere govern the motion of single magnetic elements. These elements are
arranged in typical patterns which are observed as a variety of multiscale
magnetic patterns. High resolution magnetograms of quiet solar surface revealed
the presence of magnetic underdense regions in the solar photosphere, commonly
called voids, which may be considered a signature of the underlying convective
structure. The analysis of such patterns paves the way for the investigation of
all turbulent convective scales from granular to global. In order to address
the question of magnetic structures driven by turbulent convection at granular
and mesogranular scales we used a "voids" detection method. The computed voids
distribution shows an exponential behavior at scales between 2 and 10 Mm and
the absence of features at 5-10 Mm mesogranular scales. The absence of
preferred scales of organization in the 2-10 Mm range supports the multiscale
nature of flows on the solar surface and the absence of a mesogranular
convective scale
Solar Intranetwork Magnetic Elements: bipolar flux appearance
The current study aims to quantify characteristic features of bipolar flux
appearance of solar intranetwork (IN) magnetic elements. To attack such a
problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar
Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and
an enhanced network areas. Cluster emergence of mixed polarities and IN
ephemeral regions (ERs) are the most conspicuous forms of bipolar flux
appearance within the network. Each of the clusters is characterized by a few
well-developed ERs that are partially or fully co-aligned in magnetic axis
orientation. On average, the sampled IN ERs have total maximum unsigned flux of
several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes.
The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx,
separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN
ERs exhibit a rotation of their magnetic axis of more than 10 degrees during
flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by
growth or the reverse, is not unusual. A few examples show repeated
shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic
photosphere. The observed bipolar behavior seems to carry rich information on
magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure
Small-scale solar magnetic fields
As we resolve ever smaller structures in the solar atmosphere, it has become
clear that magnetism is an important component of those small structures.
Small-scale magnetism holds the key to many poorly understood facets of solar
magnetism on all scales, such as the existence of a local dynamo, chromospheric
heating, and flux emergence, to name a few. Here, we review our knowledge of
small-scale photospheric fields, with particular emphasis on quiet-sun field,
and discuss the implications of several results obtained recently using new
instruments, as well as future prospects in this field of research.Comment: 43 pages, 18 figure
Produção e valor nutritivo da forragem de capim-elefante em dois sistemas de produção.
Esta pesquisa foi realizada com o objetivo de avaliar a produção e o valor nutritivo da forragem de capimelefante cultivado em sistemas convencional e agroecológico. No sistema convencional, o capim-elefante foi estabelecido em cultivo exclusivo, em linhas com espaçamento de 1,4 m e, no sistema agroecológico, em linhas afastadas 3 m. Nas entrelinhas, estabeleceu-se azevém no período hibernal para desenvolvimento de espécies de crescimento espontâneo no período estival. Avaliaram-se a massa, a produção e a composição botânica e estrutural da forragem e a carga animal. Amostras de simulação de pastejo foram coletadas para determinação dos teores de proteína bruta e fibra em detergente neutro e da digestibilidade in vitro da matéria seca e matéria orgânica. O delineamento experimental foi o inteiramente casualizado com dois tratamentos (sistemas convencional e agroecológico) e duas repetições (piquetes). Valores mais elevados para massa de forragem, produção de forragem, taxa de acúmulo diário e carga animal foram observados no sistema convencional. A relação folha:colmo foi similar entre os sistemas. Valor mais elevado de proteína bruta foi observado no sistema agroecológico. O capim-elefante sob manejo convencional apresenta maior produção de forragem, com menores teores de proteína bruta. O sistema agroecológico apresenta melhor distribuição da produção de forragem no decorrer do ano
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory
Atmospheric parameters, such as pressure (P), temperature (T) and density,
affect the development of extensive air showers initiated by energetic cosmic
rays. We have studied the impact of atmospheric variations on extensive air
showers by means of the surface detector of the Pierre Auger Observatory. The
rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find
that the observed behaviour is explained by a model including the effects
associated with the variations of pressure and density. The former affects the
longitudinal development of air showers while the latter influences the Moliere
radius and hence the lateral distribution of the shower particles. The model is
validated with full simulations of extensive air showers using atmospheric
profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle
Physic
Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter
Data collected by the Pierre Auger Observatory through 31 August 2007 showed
evidence for anisotropy in the arrival directions of cosmic rays above the
Greisen-Zatsepin-Kuz'min energy threshold, \nobreak{eV}. The
anisotropy was measured by the fraction of arrival directions that are less
than from the position of an active galactic nucleus within 75 Mpc
(using the V\'eron-Cetty and V\'eron catalog). An updated
measurement of this fraction is reported here using the arrival directions of
cosmic rays recorded above the same energy threshold through 31 December 2009.
The number of arrival directions has increased from 27 to 69, allowing a more
precise measurement. The correlating fraction is , compared
with expected for isotropic cosmic rays. This is down from the early
estimate of . The enlarged set of arrival directions is
examined also in relation to other populations of nearby extragalactic objects:
galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in
hard X-rays by the Swift Burst Alert Telescope. A celestial region around the
position of the radiogalaxy Cen A has the largest excess of arrival directions
relative to isotropic expectations. The 2-point autocorrelation function is
shown for the enlarged set of arrival directions and compared to the isotropic
expectation.Comment: Accepted for publication in Astroparticle Physics on 31 August 201
- …