492 research outputs found

    Collection of anthropometry from older and physically impaired persons: traditional methods versus TC2 3-D body scanner

    Get PDF
    With advances in technology it is now possible to collect a wide range of anthropometric data, to a high degree of accuracy, using 3D light-based body scanners. This gives the potential to speed up the collection of anthropometric data for design purposes, to decrease processing time and data input required, and to reduce error due to inaccuracy of measurements taken using more traditional methods and equipment (anthropometer, stadiometer and sitting height table). However, when the data collection concerns older and/or physically impaired people there are serious issues for consideration when deciding on the best method to collect anthropometry. This paper discusses the issues arising when collecting data using both traditional methods of data collection and a first use by the experimental team of the TC2 3D body scanner, when faced with a ‘non-standard’ sample, during an EPSRC funded research project into issues surrounding transport usage by older and physically impaired people. Relevance to industry: Designing products, environments and services so that the increasing ageing population, as well as the physically impaired, can use them increases the potential market. To do this, up-to-date and relevant anthropometry is often needed. 3D light-based bodyscanners offer a potential fast way of obtaining this data, and this paper discusses some of the issues with using one scanner with older and disabled people

    Hygrothermal performance of wood-hemp insulation in timber frame wall panels with and without a vapour barrier

    Get PDF
    An in situ experiment on a full-scale timber frame test building was carried out to study the hygrothermal performance of wood-hemp composite insulation in timber frame wall panels with and without a vapour barrier. The heat transfer properties and the likelihood of mould growth and condensation in the panels were compared. Step changes in the internal relative humidity were performed to explore the effects of high, normal and low internal moisture loads on the wall panels. No significant difference in the average equivalent thermal transmittance (U-values) between the panels with and without a vapour barrier was observed. The average equivalent U-values of the panels were close to the U-values calculated from the manufacturers’ declared thermal conductivity values of the insulation. The likelihood of condensation was higher at the interface of the wood-hemp insulation and the oriented strand board (OSB) in the panel without a vapour barrier. In terms of the parametric assessment of the mould germination potential, the relative humidity, the temperature and the exposure conditions in the insulation-OSB interfaces of the panel without a vapour barrier were found to be more favourable to the germination of mould spores. Nonetheless, when the insulations were dismantled, no mould was visually detected

    Standardisation of magnetic nanoparticles in liquid suspension

    Get PDF
    Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way

    Use of laser interferometry for measuring concrete substrate roughness in patch repairs

    Get PDF
    The overall success and long-term durability of a patch repair is significantly influenced by the bond developed at the interface between the concrete substrate and the repair material. In turn, the bond strength is influenced by the topography (roughness) of the substrate surface after removal of the defective concrete. However, different removal methods of defective concrete produce substrate surfaces with different topographies. Hence, the ability to measure and characterise the topography of substrate surfaces is of great importance for evaluating the effectiveness of different removal methods. In this paper, the effect of two removal methods: electric chipping hammers and Remote Robotic Hydro-erosion (RRH) on the surface roughness is investigated through the use of a prototype non-contact (optical) laser interferometry measuring device. Laboratory results show that the above equipment can be used to characterise substrate roughness and confirm the ability of RRH to create rougher surfaces as opposed to chipping hammers

    Food safety, food fraud and food defense: a fast evolving literature

    Get PDF
    Intentional food crime is plural in nature in terms of the types of crime and the differing levels of financial gain. Successful models of food crime are dependent on how well the crime has been executed and at what point, or even if, detection actually occurs. The aim of this paper is to undertake a literature review and critique the often contradictory definitions that can be found in the literature in order to compare and contrast existing food crime risk assessment tools and their application. Food safety, food defense, and food fraud risk assessments consider different criteria in order to determine the degree of situational risk for each criteria and the measures that need to be implemented to mitigate that risk. Further research is required to support the development of global countermeasures, that are of value in reducing overall risk even when the potential hazards may be largely unknown, and specific countermeasures that can act against unique risks

    Quasi steady state and dynamic hygrothermal performance of fibrous Hemp and Stone Wool insulations: Two innovative laboratory based investigations

    Get PDF
    Moisture and heat management properties of Hemp and Stone Wool insulations were studied by mounting them between a hot and a cold climate chamber. Both insulations were exposed to identical hygrothermal boundary conditions. Quasi steady state and dynamic tests were carried out at a range of relative humidity exposures. The likelihood of interstitial condensation was assessed and equivalent thermal conductivity values of the insulations were determined. The adsorption-desorption isotherms of the insulations were also determined in a dynamic vapour sorption (DVS) instrument. It was observed that the likelihood of condensation was higher in Stone Wool insulation than in Hemp insulation. Hemp insulation performed better in managing moisture due to its high hygric inertia and water absorption capacity. It was observed that the equivalent thermal conductivity of Stone Wool insulation was dependent on enthalpy flow and phase change of moisture. The equivalent thermal conductivity of Hemp insulation was close to its declared thermal conductivity in dynamic conditions when high relative humidity exposures were transient. In quasi steady state boundary conditions, when the insulation was allowed to reach the equilibrium moisture content at ranges of relative humidity, there was a moisture dependent increase of thermal conductivity in Hemp insulation

    Structure-property relationships in structural glass fibre reinforced composites from unsaturated polyester and inherently fire retardant phenolic resin matrix blends

    Get PDF
    The effects of matrices from co-cured blends of an unsaturated polyester (UP) with inherently fire-retardant and char-forming phenolic resoles (PH) on the mechanical and fire performances of resultant glass fibre-reinforced composites have been investigated. Three different phenolic resoles with increasing order of compatibility with UP have been used. These are: (i) an ethanol soluble resin, (PH-S), (ii) an epoxy-functionalized resin (PH-Ep), and (iii) an allyl-functionalized resin (PH-Al). The mechanical properties of the composites increased with increasing compatibility with two resin types as might be expected, but not previously demonstrated. However, even with the least compatible resin (PH-S), the impact properties were unaffected and the flexural/tensile properties while reduced, were still acceptable for certain applications. Fire properties were however, in reverse order as previously observed in cast resin samples from these composites. Moreover, the reduction in flammability was less compared to those of the cast resin samples, reported previously, explained here based on the insulating effect of glass fibre reinforcement

    Occupational cooling practices of emergency first responders in the United States: A survey

    Get PDF
    This is an accepted manuscript of an article published by Taylor & Francis in Temperature on 29/07/2018, available online: https://doi.org/10.1080/23328940.2018.1493907 The accepted version of the publication may differ from the final published version.© 2018 Informa UK Limited, trading as Taylor & Francis Group. Despite extensive documentation directed specifically toward mitigating thermal strain of first responders, we wished to ascertain the degree to which first responders applied cooling strategies, and what opinions are held by the various agencies/departments within the United States. An internet-based survey of first responders was distributed to the International Association of Fire Chiefs, International Association of Fire Firefighters, National Bomb Squad Advisory Board and the USA Interagency Board and their subsequent departments and branches. Individual first responder departments were questioned regarding the use of pre-, concurrent, post-cooling, types of methods employed, and/or reasons why they had not incorporated various methods in first responder deployment. Completed surveys were collected from 119 unique de-identified departments, including those working in law enforcement (29%), as firefighters (29%), EOD (28%) and HAZMAT technicians (15%). One-hundred and eighteen departments (99%) reported heat strain/illness to be a risk to employee safety during occupational duties. The percentage of departments with at least one case of heat illness in the previous year were as follows: fire (39%) HAZMAT (23%), EOD (20%) and law enforcement (18%). Post-cooling was the scheduled cooling method implemented the most (63%). Fire departments were significantly more likely to use post-cooling, as well as combine two types of scheduled cooling compared to other departments. Importantly, 25% of all departments surveyed provided no cooling whatsoever. The greatest barriers to personnel cooling were as follows–availability, cost, logistics, and knowledge. Our findings could aid in a better understanding of current practices and perceptions of heat illness and injury prevention in United States first responders. Abbreviations: EOD: explosive ordnance disposal; HAZMAT: hazardous materials.This project is financially supported by the United States Government through the United States Department of Defense (DOD).Published versio
    • …
    corecore