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Abstract 

Moisture and heat management properties of Hemp and Stone Wool insulations 
were studied by mounting them between a hot and a cold climate chamber. Both 
insulations were exposed to identical hygrothermal boundary conditions. Quasi 
steady state and dynamic tests were carried out at a range of relative humidity 
exposures. The likelihood of interstitial condensation was assessed and equivalent 
thermal conductivity values of the insulations were determined. The adsorption-
desorption isotherms of the insulations were also determined in a dynamic vapour 
sorption (DVS) instrument. It was observed that the likelihood of condensation was 
higher in Stone Wool insulation than in Hemp insulation. Hemp insulation performed 
better in managing moisture due to its high hygric inertia and water absorption 
capacity. It was observed that the equivalent thermal conductivity of Stone Wool 
insulation was dependent on enthalpy flow and phase change of moisture. The 
equivalent thermal conductivity of Hemp insulation was close to its declared thermal 
conductivity in dynamic conditions when high relative humidity exposures were 
transient. In quasi steady state boundary conditions, when the insulation was 
allowed to reach the equilibrium moisture content at ranges of relative humidity, 
there was a moisture dependent increase of thermal conductivity in Hemp insulation. 

1 Introduction 

Standard assessment methods to determine the hygrothermal properties of building 

materials provide information of their behaviour and performance in steady state 

conditions. However, hygrothermal boundary conditions are dynamic in reality [1]. 

Building materials with identical thermal conductivity values may have significantly 

different heat capacities, materials with similar vapour diffusion resistance factor may 

have significantly different moisture adsorption capacities and materials with similar 
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porosity may have different values of tortuosity. All of these can result in varied 

hygrothermal behaviour of the materials in dynamic boundary conditions.  

Hygrothermal properties of thermal insulations have been studied by a number of 

researchers. Goto et al. [2] measured the relative humidity and temperature across 

the depth of a vapour open wall in a climate chamber. The relative humidity of the 

climate chamber was gradually raised from 20% to 90% at 5°C while external 

temperature remained 23°C. The resulting relative humidity inside the vapour open 

envelope did not exceed more than 80%. Pavlik and Černý [3] tested the suitability of 

formulated stone wool insulation in the inner surface of masonry envelope as a 

vapour open system using a climate chamber. They concluded that it was possible to 

use internal insulation in a vapour open masonry system by applying a specific water 

absorbing plaster on the internal surface of the masonry. Arnaud [4] developed a 

‘cell of exchange’ where one side of the experimental sample was facing the 

temperature and relative humidity of the laboratory and the other side was facing the 

controlled temperature and relative humidity of the climate box. Arnaud compared 

the hygrothermal properties of Hemp-lime concrete, aerated autoclaved concrete 

and vertically perforated bricks and observed dampened fluctuation of temperature 

inside the Hemp-lime sample. Moisture dependent thermal conductivity of Hemp, 

jute and flax insulation at different relative humidity exposures was measured by 

Korjenic et al. [5] and that of glass and mineral wool insulations was measured by 

Abdou and Budaiwi [6] using heat flow meters. Abdou  and Budaiwi observed 216% 

increase of moisture dependent thermal conductivity of mineral wool insulation when 

15% weight based moisture was introduced into the insulation. However, measuring 

moisture dependent conductivity in a hotbox or hotplate in a steady state condition 

may cause moisture migration and moisture gradient in the sample [7] and wrapping 

https://www.researchgate.net/publication/232394089_Preliminary_investigation_of_a_vapor-open_envelope_tailored_for_subtropical_climate?el=1_x_8&enrichId=rgreq-434536ad-3925-47e5-a86c-c5bbcce4e94e&enrichSource=Y292ZXJQYWdlOzI4MjcwMzU4ODtBUzoyOTU1ODc5Njc3MTczODBAMTQ0NzQ4NTA3MTI5Mg==
https://www.researchgate.net/publication/223817525_Hygrothermal_Performance_Study_of_an_Innovative_Interior_Thermal_Insulation_System?el=1_x_8&enrichId=rgreq-434536ad-3925-47e5-a86c-c5bbcce4e94e&enrichSource=Y292ZXJQYWdlOzI4MjcwMzU4ODtBUzoyOTU1ODc5Njc3MTczODBAMTQ0NzQ4NTA3MTI5Mg==
https://www.researchgate.net/publication/241095717_Development_and_performance_evaluation_of_natural_thermal-insulation_materials_composed_of_renewable_resources?el=1_x_8&enrichId=rgreq-434536ad-3925-47e5-a86c-c5bbcce4e94e&enrichSource=Y292ZXJQYWdlOzI4MjcwMzU4ODtBUzoyOTU1ODc5Njc3MTczODBAMTQ0NzQ4NTA3MTI5Mg==
https://www.researchgate.net/publication/257389594_The_variation_of_thermal_conductivity_of_fibrous_insulation_materials_under_different_levels_of_moisture_content?el=1_x_8&enrichId=rgreq-434536ad-3925-47e5-a86c-c5bbcce4e94e&enrichSource=Y292ZXJQYWdlOzI4MjcwMzU4ODtBUzoyOTU1ODc5Njc3MTczODBAMTQ0NzQ4NTA3MTI5Mg==
https://www.researchgate.net/publication/222126945_A_rational_approach_to_the_harmonisation_of_the_thermal_properties_of_building_materials?el=1_x_8&enrichId=rgreq-434536ad-3925-47e5-a86c-c5bbcce4e94e&enrichSource=Y292ZXJQYWdlOzI4MjcwMzU4ODtBUzoyOTU1ODc5Njc3MTczODBAMTQ0NzQ4NTA3MTI5Mg==


the sample in foil or similar covering will not represent the heat flux in a vapour open 

construction. As much as twenty two times increase of moisture dependent thermal 

conductivity of hydrophilic mineral wool insulation was observed by Jerman and 

Černý [8] using transient thermal analyser. Laboratory based experiments were also 

carried out to compare cellulose and Stone Wool insulations in high internal moisture 

load and low external temperature [9, 10] and the impact was more apparent in 

thermal properties than in hygric ones.  

The in situ work carried out by Latif et al. [11] at ranges of internal relative humidity 

showed that Wood-Hemp insulation performed significantly better than Stone Wool 

insulation in reducing the frequency and likelihood of interstitial condensation while 

the equivalent U-value of both insulations remained close to the U-value calculated 

from the manufacturers’ declared thermal conductivity values. Nicolajsen [12] 

assessed thermal transmittance of cellulose loose-fill insulation (with and without a 

vapour barrier) and Stone Wool insulation (with vapour barrier) in a north facing 

timber frame wall  at 20°C internal temperature and 60% internal relative humidity. 

For similar thickness, the thermal transmittance value of cellulose was 0.14 W/m2K 

and that of Stone Wool was 0.12 W/m2K. Southern [13] tested a masonry wall with 

internal glass fibre insulation and internal vapour barrier. It was found that during 

summer time condensation could occur in the inner surface of the vapour barrier. 

Similar observations were also made by Derome and Saneinejad [14]. 

Rasmussenand and Nicolajsen [15] studied the performance of insulated roofs .with 

vapour barrier and walls without vapour barrier in real life conditions for two years. 

Cellulose, wood-fibre, flax fibre materials and mineral insulations were assessed in 

terms of moisture management. The moisture conditions in the insulation did not 

create any risk of mould growth. An insitu study [16] of application of vapour open 
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mineral wool internal insulation on solid brick walls showed that there was no 

deterioration in the hygrothermal performance of mineral wool insulation. Walker and 

Pavia [17] investigated the in situ thermal performance of thermal paint, aerogel, 

cork lime, hemp lime, calcium silicate board, timber fibre board and PIR board on a 

historic brick wall. The insulations were applied to walls facing different orientations 

and hygric behaviour of the insulations was not assessed. Cork lime and hemp lime 

decreased the wall U-value by 45% and 36.9%, respectively. In situ performance of 

thermal insulation materials was also studied by [18-20]. 

To date no laboratory based experimental work has been reported on assessing the 

hygrothermal behaviour of Hemp insulation in dynamic hygrothermal boundary 

conditions in comparison to that of a conventional fibrous insulation material. 

This paper reports the results of a number of laboratory tests that are carried out to 

assess the hygrothermal properties of Hemp and Stone Wool insulations of identical 

thermal conductivity and differing in vapour permeability by 21.7%, under both 

dynamic and quasi steady state boundary conditions. The reason for selecting two 

different hygrothermal protocols is to study if there is any difference in moisture and 

heat management of insulations when these are exposed to quasi steady state 

boundary condition incorporating prolonged exposure to each step of relative 

humidity conditions compared to when they are exposed to fully dynamic boundary 

conditions involving frequent changes in relative humidity and temperature.  
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2 Theory 

2.1 Moisture adsorption and diffusion 

The moisture storage capacity of insulation materials as a function of relative 

humidity at a constant temperature can be characterised by its adsorption isotherm 

[21]. The rate of moisture transfer through an insulation at a constant temperature 

can be characterised by its vapour permeability or vapour diffusion resistance factor 

[22]. 

2.2 Liquid water absorption  

Porous materials, in direct contact with liquid water, absorb water by capillary forces. 

The ratio of water flux through the free water surface and the square root of time is 

expressed as the water absorption coefficient. 

2.3 Condensation, vapour pressure, dew point temperature 

Condensation can occur in a surface when the surface temperature is equal or less 

than the dew point temperature of the vapour in touch with the surface. Moisture 

concentration inside different insulations can be compared in terms of the 

corresponding vapour pressures. Dew point temperature and vapour pressure can 

be determined from temperature and relative humidity values using Equations 1 and 

2, respectively: 

      T
D

=   [ (
𝑣

100
)

1

8]  (112 +  0. TT)  +  0.1T − 112                                                        [1]   

e = 6.11 ∗ 10
(7.5∗ TD)

(237.7+ TD)                                                                                                    [2]        

Where, TD = dew point temperature (°C), v = relative humidity (%), T = temperature 

(°C), e = actual vapour pressure (hPa) 



2.4 Equivalent thermal conductivity 

For the purpose of this paper, ‘equivalent thermal conductivity’ is defined as the 

thermal conductivity value determined either in quasi steady state or in dynamic 

hygrothermal boundary conditions, based on the method of determining in-situ U-

value of building elements in dynamic hygrothermal boundary conditions. According 

to ISO 9869 [23], U-value can be determined from the following equation: 

        U =  

∑ 𝑞𝑗

𝑛

𝑗=1

∑ (𝑇𝑖𝑗−𝑇𝑒𝑗)
𝑛

𝑗=1

                                                                                                       [3] 

Where, U is thermal transmittance (W/(m2.K)), j is the number of individual 

measurements, qj is total density of heat flow (W/m2), Tij is total internal temperature 

(°C) and Tej is total external temperature (°C). Equivalent thermal conductivity can be 

determined using the following equation: 

                       λequi = d.U = d/R        [4] 

Where, λequi is equivalent thermal conductivity (W/(m.K)), d is insulation thickness 

(m), R is thermal resistance ((m2.K)/W) of insulation. R can be calculated from the 

following equation: 

R= RT-R1-Rsi-Rse        [5] 

Where, RT is the total thermal resistance of the component, Rsi is the internal surface 

thermal resistance, R1 is the design thermal resistance of acrylic, Rse is the external 

surface thermal resistance. 

ISO 9869 outlines the following likely errors in heat flux measurements: 5% error due 

to the calibration of the heat flux and temperature sensors, 5% error due to the 

random variation caused by difference in thermal contact between the sensors and 

the surface when one heat flux sensor is used, 2% operational error due to the 



modification of isotherms by the placement of heat flux sensors, 5% error due to 

variations in temperature and heat flux over time and when the test wall is not in 

direct contact with sunlight. Another 5% error is introduced to the thermal 

transmittance value or U-value measurement due to the temperature variations 

within the space and difference between air and radiant temperature. Thus, the total 

error in U-value measurement can be calculated from the following equation: 

Total error in U-value measurement = √52 + 52 + 22 + 52 + 52 = 10.2% 

2.5 Design value of thermal conductivity 

The design value provides an estimate of the thermal conductivity of an insulation 

material during service conditions and is extensively used in engineering practices 

[24]. According to ISO 10051 [25], when the effect of moisture on thermal 

conductivity is concerned, the relationship between the declared value of thermal 

conductivity and the design value of thermal conductivity can be expressed as:  

λ2 = λ1 ∗ 𝐹𝑚                                                                                                    [6] 

𝐹𝑚 = 𝑒fU(U2−U1)                                                                                              [7] 

Where, λ1 (W/m.K) is the declared value of thermal conductivity, λ2 (W/m.K)  is the 

design value of thermal conductivity, fu is the moisture conversion coefficient mass 

by mass, u1 is the moisture content mass by mass of the first set of conditions, u2 is 

the moisture content mass by mass of the second set of conditions. 

3 Material and Method 

3.1 Materials 

The key physical and thermal properties of the Hemp and Stone Wool insulations 

tested are given in Table 1. 



Table 1. Summary of the properties of the Hemp and Stone Wool insulations. 

Material Density 
(kg/m3) 

Thickness 
(mm) 

Specific 
heat 
capacity 
(J/kg.K) 

Constituents Thermal 
conductivity 
(W/m.K) 

Vapour  
permeability [26] 
(Kg/(m.s.Pa)) 

 
Hemp 

 
50 

 
55 

 
1600 

 
85% Hemp fibres, 10-12% 
bi-component fibres and 3-
5% soda 

 
0.038 

 
0.56 

Stone 
Wool 

23 100 850 Amphibolite, about 6% 
lime stone, about 9% 
calcium oxide, resin 

0.038 0.46 

 

Before installation, both Hemp and Stone Wool insulation materials were stored at 

23 (± 2) °C temperature and 50 (± 5) % relative humidity for 90 days. The adsorbed 

water contents in Hemp and Stone Wool for this exposure are 3.4 (±0.0) Kg/m3 and 

0.1 (± 0.001) Kg/m3, respectively, calculated from the adsorption-desorption 

isotherms determined in a DVS equipment (Fig. 1a). The desorption isotherms are 

not shown because of the very negligible hysteresis effect. Fig. 1b shows the water 

absorption curve of hemp in relation to time [4], the water absorption of Stone Wool 

is negligible and is not presented. 

  

Fig. 1. (a) Adsorption isotherms of Hemp and Stone Wool insulation, (b) Water 
absorption of Hemp insulation [4]. 

The air permeability of the samples at 50 Pascal pressure difference was also 

measured using a DG-700 pressure and fan flow gauge, a cylindrical metal duct and 

a Duct Blaster fan. For the sample size of 400mm X 400m X 100m, the air 

permeability of Hemp and Stone Wool was 214 m3/h and 222 m3/h, respectively. 
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3.2 Instrumentation 

CS215 sensors were used to measure the temperature and relative humidity. The 

accuracy of the relative humidity measurement at 25 °C is ±4% over 0%-100% 

relative humidity. The length of the sensor is 180 mm and average diameter is 15 

mm. HFP01 heat flux sensors were used to measure heat flux through the insulation. 

The measurement range is between -2000 W/m2 and +2000 W/m2 and the accuracy 

is ± 5% on walls. The thickness of the sensor is 5 mm and the diameter is 80 mm. A 

CR 1000 data logger was used to acquire sensor data. 

3.3 Method 

The tests were carried out using two different protocols of hygrothermal boundary 

conditions: quasi steady state and dynamic. For both protocols, the key objectives 

were to assess the moisture management potential and the equivalent thermal 

conductivity of the insulations using dual insulation set-ups. In the dual insulation set-

ups, two insulations were placed adjacent to each other and were exposed to 

identical hygrothermal boundary conditions. To ensure unidirectional heat flux and 

moisture exposure, one surface of each insulation was exposed to a cold chamber 

and the other surface was exposed to a hot chamber with relative humidity control. 

The surface of the insulations facing the cold chamber was covered with a clear 

acrylic sheet to prevent any moisture interaction with the cold chamber and between 

the insulations. The acrylic outer surface also acted as an interface surface to induce 

and visualise condensation. The tests were carried out in two different laboratories in 

Europe following the quasi steady static and dynamic protocols. The design of the 

dual insulation setups and the hygrothermal conditioning devices varied between the 

protocols. The details of the individual protocols are provided in subsections 3.3.1 

and 3.3.2. 



During both protocols, the vapour pressure inside the hot chamber was increased or 

decreased. Increase of vapour pressure pushed the moisture and enthalpy through 

the insulation towards the cold acrylic surface. The eventual decrease in vapour 

pressure caused the moisture to flow back to the hot chamber. It was assumed that 

the vapour pressure gradient would vary across the depth of the insulation materials, 

according to their vapour diffusion resistance factors and sorption isotherms. It was 

also assumed that condensation would occur earlier in the insulation-acrylic interface 

of the insulation that had lower hygric diffusivity, since hygric diffusivity is a function 

of moisture adsorption capacity and vapour permeability. 

3.3.1 Protocol for Test-1: Quasi Steady State 

In Test-1, the temperature difference between the opposite surfaces of the 

insulations was kept constant and step changes were made in the interior relative 

humidity of the hot chamber. Test-1 consisted of two tests: Test-1.1 and Test-1.2. 

Experimental Setup and Sample Installation 

Test 1.1: Hemp and Stone Wool insulations were placed inside an extruded 

polystyrene (XPS) insulation framework. The dimensions of the framework, the 

placement of insulations and the sensors are shown in Fig. 2. The XPS framework 

(Fig. 2a) was placed in an insulated steel partition frame. The steel partition frame 

was installed between the hot and cold chamber (Fig. 2b). 

Temperature and relative humidity sensors were placed in the mid-thickness and on 

the cold side surface and on the warm side surface of the insulations. Heat flux 

sensors were placed on the acrylic sheets adjacent to the cold side surfaces of the 

insulation materials. 



 
A 

 
B 

Fig. 2. (a) The front elevation and the cross section of the dual-insulation 
setup, (b) The dual climate chamber. 

Test 1.2: In Test-1.2, heat flux sensors and relative humidity sensors were placed in 

the mid thickness of the insulations. Position of the insulations in the dual insulation 

setup was also swapped over vertically. 

Experimental method 

The target temperature and relative humidity profile for Test-1 is shown in Table 2 

and Fig. 3. Temperature in the hot chamber was set at constant 23 °C and in the 

cold chamber at constant 7 °C resulting in a constant temperature difference of 16 

°C ± 1 °C. The following step changes in relative humidity were made in the hot 



chamber at every 24 hours: 33%, 55%, 80%, 95%, 55%. However, another 8 hours 

were added to the initial step (33%) during Test-1.1 so that the insulation materials 

were reasonably dry. These specific relative steps were selected for the following 

reasons: firstly, they are included in relative humidity variation protocols for standard 

adsorption-desorption tests such as Nordtest [27] and ISO 24353 [28], secondly, the 

results can be compared with some of the in situ tests carried out using the same 

relative humidity variation protocol [11, 29]. The time for each step of relative 

humidity condition was sufficient for the insulation materials to reach equilibrium 

moisture content. The relative humidity in the cold chamber, kept at 55%, was not 

interacting with the cold surfaces of the insulations covered by acrylic sheets.  

Table 2. The temperature and relative humidity profile of the climate chamber. 

 Cold Chamber Hot Chamber 

Steps Temperature 
(°C) 

Relative 
Humidity 
(%) 

Duration 
(Hours) 

Temperature 
(°C) 

Relative 
Humidity (%) 

Duration 
(Hours) 

1 7 55 33 23 33 33 

2 7 55 24 23 55 24 

3 7 55 24 23 80 24 

4 7 55 24 23 95 24 

5 7 55 24 23 55 24 

 

 

Fig. 3. The temperature and relative humidity profile of the climate chamber. 
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3.3.2 Protocol for Test-2: Dynamic State 

In Test-2, the temperature difference between the opposite surfaces of the 

insulations and the relative humidity of the hot chamber was dynamic. 

Experimental Setup and Sample Installation 

The insulations were placed side by side in a 30 mm EPS framework, separated by a 

30 mm layer of EPS insulation (Fig. 4a). The EPS framework was placed inside an 

insulation holder in front of the hot chamber. The cold side surfaces of the insulations 

were covered by 3 mm clear acrylic sheets. Fig. 4b shows the dynamic hygrothermal 

hot box setup. 

 
A 

 
B 



 

Fig. 4. (a) The front elevation and the section of the dual-insulation setup, (b) 
the hygrothermal hotbox setup. 

Each insulation was fitted with one heat flux sensor and four temperature and 

relative humidity sensors. The position of the temperature and relative humidity 

sensors and heat flux sensors in the insulations is shown in Fig. 4a. The heat flux 

sensors were placed in the centre of the insulations. It was assumed that placing the 

heat flux sensor at the mid-thickness of the insulations would be most useful in 

acquiring the typical heat flux data, uninterrupted by the dynamic changes of 

temperature and relative humidity in the hot chamber. However, the heat flux 

sensors would be unable to register any sudden change in heat flux due to phase 

change in the insulation-acrylic interfaces. All data were logged in a CR 1000 data 

logger. 

Experimental method 

Hemp and Stone Wool insulation materials were exposed to the dynamic relative 

humidity ranges of the hot chamber varying between 35% and 80% as the dynamic 

hygrothermal hot box was not able to raise relative humidity above 80%.To induce 

unidirectional heat flux within the temperature control range of the test setup, the 

internal temperature of the hot chamber was kept at 35 °C and the external 

temperature was kept at 19 °C with an amplitude of 3 °C. Two tests were conducted: 

Test-2.1 and Test-2.2. During Test-2.1, the relative humidity of the hygrothermal hot 

box was increased from 50% to 75% (±5%) in 72 hours and then decreased from 

75% to 50% (±5%) in 24 hours. During Test-2.2, the relative humidity of the hot 

chamber was raised from 35% to 80% (±5%) in 48 hours and then decreased from 

80% to 35% (±5%) in 216 hours. The longer duration of Test-2.2 was made to study 

the drying out of the insulation materials. 



4 Results and Discussion 

4.1 Test 1: Quasi Steady State test 

4.1.1 Moisture Management 

The relative humidity conditions in Hemp and Stone Wool insulations are shown in 

Fig. 5. During Test-1.1, conducted in the winter time, air velocity adjacent to the 

exposed surfaces of Hemp and Stone Wool insulation was 0.45 m/s. However, 

during Test-1.2, conducted in the summer time, the air velocity near the exposed 

surface of Hemp was 1.2 m/s and near the exposed surface of Stone Wool was 

0.6m/s. Since increase in air velocity decreases the surface air resistance and 

increases the rate of adsorption of moisture, it can be assumed that during Test-1.2 

Hemp was subjected to higher moisture load.  

During Test-1.1 (Fig. 5a), in response to the step changes of relative humidity in the 

hot chamber, the relative humidity in the internal surface, insulation-acrylic interface 

and the middle of the Stone Wool insulation changed instantaneously while the 

relative humidity in the middle and in the insulation-acrylic interface of Hemp 

insulation changed slowly. The relative humidity of Stone Wool-acrylic interface rose 

to 95% as soon as the relative humidity of the hot chamber was increased from 33% 

to 55%. At the same time, the relative humidity of the Hemp-acrylic interface 

gradually increased to 72%. When the relative humidity of the hot chamber was 

increased to 80%, 77 hours after the beginning of the experiment, the relative 

humidity of Stone Wool-acrylic interface increased to 98.4% and the relative humidity 

of Hemp-acrylic interface increased to 84.3%. When the relative humidity of the hot 

chamber was raised from 80% to 100%, the relative humidity of Stone Wool-acrylic 

interface increased to 100%, and the relative humidity at the Hemp-acrylic interface 

increased to 95%.  



 

 

Fig. 5. Relative humidity (a) along the depth of Hemp and Stone Wool 
insulations during Test-1.1, (b) in the mid thickness of Hemp insulation during 

Test-1.2. 

The relative humidity of Hemp-acrylic interface reached 100% only after the 

insulation was exposed to all the increasing step changes of relative humidity over 

111 hours. While the middle of the Stone Wool insulation also responded instantly to 

the changes of relative humidity in the warm chamber, the middle of the Hemp 

insulation showed a dampened response to the relative humidity changes in the 

warm chamber. Similar phenomenon was also observed in the mid thickness of both 

insulations during Test-1.2 (Fig. 5b). However, during Test-1.2, the relative humidity 

response of both insulations was at a higher magnitude due to the increased air 

velocity near the exposed surfaces of the insulations.  
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Fig. 6 shows condensed water in the Stone Wool-acrylic interface and the dry Hemp-

acrylic interface during Test-1.1. When the insulation materials were removed from 

the framework, water deposits on the lower surface of the framework of the Stone 

Wool insulation were also noticed, implying that further condensation had occurred in 

the Stone Wool insulation setup during the experiment. It was not possible to 

measure the amount of condensate resulting from the experiments but another study 

by the authors [29] did examine this aspect.  

 

Fig. 6. Dew on acrylic inner surface of Stone Wool and dry acrylic inner 
surface of Hemp insulation. 

Fig. 7 shows the internal surface temperature of the acrylic and the dew point 

temperature of insulation-acrylic interface air during Test-1.1. Condensation seemed 

to occur in the acrylic surface of the Stone Wool-acrylic interface as soon as the 

humidity of hot chamber increased from 33% to 55% and remained for 60 (±1) hours. 

Condensation seemed to occur in the acrylic surface of the Hemp-acrylic interface 

36 (±1) hours later than it occurred in the Stone Wool-acrylic interface (Fig. 7). Hemp 

responded slowly to the decreasing step change in boundary relative humidity 



conditions. During Test 1.2, condensation also occurred earlier in the Stone Wool-

acrylic interface even though the air velocity near the exposed surface of Hemp was 

twice that near the exposed surface of Stone Wool. 

 

Fig. 7. Internal surface temperatures of the acrylic and the insulation-acrylic 
dew point temperatures. 

During both tests, the temperature difference between the warm side and cold side 

of both insulations remained equal and constant most of the time. The temperature 

in the insulation-acrylic interfaces also remained nearly constant. Therefore, the rate 

of moisture flow at the Hemp-acrylic interface was lower than that at the Stone Wool-

acrylic interface during the experimental runs. Moisture flow is a function of 

hygroscopic capacity, vapour permeability and rate of air flow. Since the vapour 

permeability of both insulations is similar, as also observed by Collet et al. [30], and 

the cooler sides of the insulations were airtight, the managed response of Hemp 

insulation can mainly be attributed to its higher moisture adsorption capacity and to a 

limited extent to its relatively lower air permeability. 

Once condensation occurred in the insulation-acrylic interface, the condensed water 

in touch with the insulation can be absorbed by the insulation. The amount of water 

that will be left on the surface of the acrylic will depend on the rate of condensation 
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on the acrylic and the coefficient of water absorption and water absorption capacity 

of the insulation. Water absorption coefficient of Hemp insulation is 0.034 kg/m2√s 

[26] and that of Stone Wool insulation is negligible. Therefore, Hemp will absorb 

more water than Stone Wool insulation when condensed water is in touch with the 

insulation surfaces.  

4.1.2 Heat flux and equivalent thermal conductivity 

The equivalent thermal conductivity values were determined from ambient 

temperature differences, heat flux and thickness of the material, following Equations 

3 and 4. The actual ranges of relative humidity for Tets-1.1 were: 33%, 56%, 81% 

and 100% (Fig. 8a) and Test-1.2 were: 34%, 57%, 86% and 89% (Fig. 8b). It can be 

noticed in Fig. 8 that the temperature difference between the hot and cold chambers 

was constant throughout the duration of the experiment. Therefore, changes of 

equivalent thermal conductivity values of the insulation materials can be assumed to 

be due to the changes in relative humidity in the hot chamber. It can be observed in 

both Test 1.1 and Test 1.2 that the equivalent thermal conductivity of Hemp 

increases marginally with each increasing relative humidity range, which can be 

explained in terms of the equilibrium moisture content (EMC) of Hemp insulation. 

However, it can also be noticed that the equivalent thermal conductivity of Stone 

Wool insulation started decreasing from the onset of condensation at the 37th hour 

during Test-1.1. Heat flux towards the cold chamber was expected to increase due to 

enthalpy flow and phase change. The reasons for this phenomenon can be the 

difference in the position of the heat flux sensor and the area of condensation on the 

acrylic surface or the distortion of heat flux measurement due condensation on the 

surface of the heat flux sensor. The heat flux sensor, due to its placement, plausibly 

failed to log the heat flux by enthalpy flow and phase change. There is also a 



possibility that once water condensed on the surface of the heat flux sensor, the 

oncoming heat was absorbed by the condensate and thus the heat flux sensor 

registered lower heat flux and the function of the sensor was distorted. Thus, the 

positioning of the heat flux sensor in the insulation-acrylic interface can cause 

uncertainty and distortion in the heat flux measurement when excessive 

condensation occurs in the interface. To address this issue, heat flux sensors were 

positioned in the mid thickness of the insulations during Test 1.2. During this test, 

both insulations exhibited an increase in thermal conductivity at high relative 

humidity ranges starting from 80% and onward (Fig.8b). 
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Fig. 8. Equivalent thermal conductivity values of Hemp and Stone Wool 
insulation and interior and insulation-acrylic interface relative humidities 

during (a) Test-1.1 and (b) Test-1.2. 

Fig. 9 shows the thermal image of the insulations exposed to the final relative 

humidity step in the hot chamber during Test-1.2. In the Hemp insulation, a vertical 

gradient of moisture on the surface of the insulation is visible with gravity induced 

higher concentration towards the bottom. In the Stone Wool insulation, the hot and 

cold spots are randomly distributed, plausibly suggesting convective heat loss. 

 

Fig. 9. Thermal image of the insulations facing the hot chamber. 

Fig. 10 shows the thermal conductivity values of the insulations at different ranges of 

relative humidity and Table 3 and 4 compare the equivalent thermal conductivity with 

the corresponding design values of thermal conductivity determined by applying 

Equation 5. For determining design values of Hemp insulation, the moisture 

conversion coefficient has been taken as equal to that of the cellulose fibre. Moisture 

content by mass is determined from the adsorption isotherms of the insulations. The 

average of the whole data shows that the equivalent thermal conductivity of Hemp 



(0.048 W/(m.K)) is 16.6% higher than the design thermal value (0.04 W/(m.K)) at an 

average relative humidity of 63% during Test-1.1 and is equal to the design thermal 

value (0.040 W/(m.K)) at an average relative humidity of 66% during Test-1.2. The 

experimental average equivalent thermal conductivity value of Stone Wool (0.033 

W/(m.K)) is 17.5% lower than the design thermal value (0.04 W/m-K) during Test-1.1 

and 9% higher than the design value during Test-1.2.  

  

Fig. 10. Equivalent thermal conductivity values of Hemp and Stone Wool 
Insulations during (a) Test-1.1 and (b) Test-1.2. 

. 

Table 3. Experimental and design value of thermal conductivity with standard 
deviations (Test 1.1). 
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Table 4. Experimental and design value of thermal conductivity with standard 
deviations (Test 1.2). 
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4.2 Test 2: Dynamic Tests 

4.2.1 Moisture Management 

Fig.11 shows the relative humidity and vapour pressure in the insulation-acrylic 

interfaces and in the hot chamber during Test-2.1 and Test-2.2, respectively.  

  

Fig. 11. Relative humidity and vapour pressure inside the dynamic hot box and 
in the insulation external surfaces during (a) Test-2.1 and (b) Test-2.2. 

During Test-2.1, the relative humidity in the Stone Wool-acrylic interface increased to 

90% in 30 hours in response to the rise in relative humidity in the hot chamber to 
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62%. At the same time relative humidity in the Hemp-acrylic interface increased to 

72%. When the relative humidity in the hot chamber reduced, the relative humidity 

decreased quicker in the Stone Wool-acrylic interface than in the Hemp-acrylic 

interface. Similar observation about the insulation materials’ response to changes in 

relative humidity can also be made about Test-2.2. During Test-2.2, heavy 

condensation in the Stone Wool-acrylic interface was noticed on the 46th hour (Fig. 

12). The relative humidity sensor registered about 93% relative humidity of the 

adjacent air.  

The instances of occurrences of condensation at the acrylic surface can be 

estimated by determining its dew point temperature. Condensation is likely whenever 

the surface temperature of the acrylic is equal to or lower than the dew point 

temperature of the adjacent moist air. 

 

Fig. 12. Condensation in Stone Wool–acrylic interface, Hemp-acrylic interface 
remained dry. 

It can be observed in Fig. 13 that condensation started on the Stone Wool-acrylic 

interface on the 57th hour and carried on for 35 hours. This is marked by the grey 

shades between the line of acrylic surface temperature and the line of Stone Wool 



dew point temperature. The calculated period of condensation was confirmed by the 

visual observation of condensation on the acrylic surface of the Stone Wool-acrylic 

interface (Fig. 12). 

 

Fig. 13. Dew point temperatures of Hemp and Stone Wool and the acrylic 
surface temperature during condensation (Test-2.2). 

Fig.14 shows the relative humidity at different depths of Stone Wool and Hemp 

insulation materials during Test-2.2. It can be noticed that peak relative humidity 

near the external surface of the Stone Wool insulation was 8% higher than the peak 

relative humidity near the external surface of Hemp insulation for 50 hours. When 

condensation was noticed during Test-2.2, the climate chamber was switched off on 

the 49th hour so that the relative humidity inside the hot chamber could decrease. 

When the climate chamber was turned off, the relative humidity in the external 

surface of Stone Wool insulation remained 94.6% for 48 hours. The relative humidity 

in the external surface of Hemp insulation increased from 83% to 88% during the 

same period. However, at other depths, the relative humidity of Stone Wool 

insulation dropped instantaneously while Hemp showed dampened initial response. 
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Fig. 14. Relative humidity distribution in the insulation materials during Test-2. 

4.2.2 Thermal Conductivity 

The effective equivalent thermal conductivity values of the insulations during Test-

2.1 and Test-2.2 are shown in Fig. 15. 

  

Fig. 15. Effective equivalent thermal conductivity of Hemp and Stone Wool 
insulations during (a) Test-2.1 and (b) Test-2.2. 
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conductivity values of Hemp insulation at 52% and 45% average relative humidity 

are similar to the manufacturers’ declared thermal conductivity of Hemp insulation. 

While the equivalent thermal conductivity of Hemp at 80% relative humidity is 21% 

higher than the manufacturers’ declared thermal conductivity (Fig. 16b), the increase 

was very transient. It suggests that if the Hemp insulation is exposed to fewer 

periods of high internal relative humidity compared to the periods of moderate 

internal relative humidity, then the effect of higher relative humidity on the average 

thermal conductivity of Hemp insulation is negligible. To ascertain moisture 

dependent thermal conductivity, adsorbed equilibrium moisture content for the 

ranges of relative humidity exposures needs to be determined. In an isothermal 

condition, a 100 mm thick fibrous insulation requires approximately 20 hours to reach 

equilibrium moisture content (EMC). In Test-2.1 and Test-2.2, due to the nature of 

the dynamic conditions, it was not possible to obtain continuous 20 hours data during 

the periods of peak relative humidity.  

  

Fig. 16. Equivalent thermal conductivity values of Hemp and Stone Wool 
Insulations during (a) Test-2.1 and (b) Test-2.2. 

For Stone Wool insulation, the average equivalent thermal conductivity is about 
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manufacturers’ declared thermal conductivity. It is also explicit in Fig. 16(b) that 

thermal conductivity of Hemp insulation slightly increased with increased relative 

humidity while for Stone Wool insulation, thermal conductivity increased by 78.9% 

suddenly at 80% relative humidity. It implies that the heat loss through enthalpy flow 

and phase change may have occurred in Stone Wool insulation during Test-2.2 at 

80% relative humidity, coinciding with the onset of condensation. 

A table of equivalent thermal conductivity values along with the design values of the 

thermal conductivity of Hemp and Stone Wool insulation materials is presented in 

Table 5 and 6. It can be observed that the experimental thermal conductivity value of 

Stone Wool (0.054 W/(m.K)) is higher than the design thermal value (0.04 W/(m.K)).  

It can be further observed, in Table 5 and 6, that the experimentally determined 

thermal conductivity values of Hemp insulation at 50% and 60% relative humidity are 

about 15% lower than the corresponding design values. For Stone Wool insulation, 

there is a substantial difference between experimental and design values of thermal 

conductivity. Since Stone Wool adsorbs negligible quantity of moisture, the value of 

the moisture supplement used to determine the design value of thermal conductivity 

is very low which results in low design values. However, in this experiment, the 

increase in heat flux through Stone Wool insulation may be due to the moisture 

transmission and phase change rather than adsorption.  



Table 5. Equivalent and design values of thermal conductivity of Hemp and 
Stone Wool insulations during Test-2.1. 
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70% 243 0.04 0.002 0.041 -2.43 0.054 0.002 0.04 35 

 

Table 6. Equivalent and design values of thermal conductivity of Hemp and 
Stone Wool insulations during Test-2.2. 

In
te

rn
a
l 
re

la
ti
v
e

 

h
u

m
id

it
y
 (

%
) 

N
o
. 

o
f 

d
a

ta
 

λ
e

q
u
i 
o

f 
H

e
m

p
 

(W
/(

m
.K

))
 

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n
 

D
e
s
ig

n
 v

a
lu

e
 o

f 
λ
 o

f 

H
e
m

p
 ,

 (
W

/(
m

.K
))

 

C
h
a

n
g

e
 i
n

 λ
e

q
u

i 

c
o

m
p

a
re

d
 t

o
 t
h

e
 

d
e

s
ig

n
 v

a
lu

e
 (

%
) 

λ
e

q
u
i 
o

f 
S

to
n

e
 W

o
o
l,
 

(W
/(

m
.K

))
 

S
ta

n
d

a
rd

 d
e
v
ia

ti
o

n
 

D
e
s
ig

n
 v

a
lu

e
 o

f 
λ
 o

f 

S
to

n
e

 W
o

o
l,
 (

W
/(

m
.K

))
 

C
h
a

n
g

e
 i
n

 λ
e

q
u

i 

c
o

m
p

a
re

d
 t

o
 t
h

e
 

d
e

s
ig

n
 v

a
lu

e
 (

%
) 

50% 392 0.035 0.006 0.04 -12.5 0.053 0.005 0.04 32.5 
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4.3 Summary and discussion of Test-1 and Test-2 

Moisture management: Both quasi steady state and dynamic tests show that Hemp 

insulation can dampen the moisture flux and reduce the risk of condensation while 

Stone Wool insulation is susceptible to moisture fluctuation and condensation. This 

observation corresponds with the in situ study of the moisture management of Hemp 

and Stone Wool insulations in a range of interior moisture load [11].The adsorption 



and desorption capacity of hemp fibre can potentially be used for moisture buffering 

of lofts [31] and interior space taking the effect of inner linings into account [32]. For 

Stone Wool insulation, high moisture content in the surface adjacent to the acrylic 

sheet, caused by condensation, and very high relative humidity in the mid depth also 

suggest that its adsorption isotherm does not represent the actual moisture content 

in the insulation during service conditions, as also observed by Vrána et al. [33]. 

Equivalent Thermal conductivity: Fig. 17 shows the relationship between the 

equivalent thermal conductivity values and the relative humidity in the hot chambers. 

Hemp insulation demonstrated moisture dependent increase in equivalent thermal 

conductivity both in quasi steady state and dynamic tests although values are often 

below design values. During the quasi steady state tests, the level of increase 

depended on the position of the heat flux sensor due to the influence of the phase 

change of moisture. When the heat flux sensor was placed in the mid thickness, the 

average equivalent thermal conductivity of Hemp insulation was 5% higher than the 

manufacturers’ declared thermal conductivity. When the relative humidity and 

temperature were fluctuating during the dynamic tests, the average thermal 

conductivity of Hemp insulation was similar to the manufacturers’ declared thermal 

conductivity.  

For Stone Wool insulation, moisture flux dependent increase of thermal conductivity 

was observed during both quasi steady state and dynamic tests when the heat flux 

sensors were placed in the mid thickness of the insulations. The level of increase 

varied between the tests plausibly due to the variation in convective air flow near the 

exposed surface of the insulation. When the heat flux sensor was placed in the 

insulation-acrylic interface during Test-1.1 the thermal conductivity result was 

distorted. The distortion may had been due to the difference between the location of 



heat flux sensors and the location of condensation or due to the condensed water on 

the hat flux sensor absorbing the outgoing heat. 

 

 

Fig. 17. Correlation between the relative humidity of hot chamber and the 
thermal conductivity of (a) Hemp and (b) Stone Wool insulations. 

Although there are several factors contributing to the results including sensor 

position and occurrence of condensation, results suggest that thermal conductivity of 

hemp tends to be similar or lower than the manufacturers declared value under 

dynamic conditions, and higher only when high relative humidity levels are 

maintained over extended time periods. In the majority of heating climates external 

relative humidity and temperatures vary over diurnal time periods, and internal 

conditions vary according to the building construction and equipment and the actions 
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of its occupants. Therefore it is not possible to state whether the protocols followed 

here do or do not correspond to conditions found in practice. However, given that 

climatic conditions tend to vary and overly humid interiors tend to get vented by the 

occupants, then probably the results derived under dynamic conditions are more 

relevant to practice.  

5 Conclusion  

Quasi steady state and dynamic hygrothermal experiments were carried out to 

assess the moisture and heat flux management capacity of Hemp and Stone Wool 

insulations. It was observed that, in response to the changes in relative humidity in 

the climate chamber, hygric response of Stone Wool insulation was instantaneous 

and that of Hemp insulation was delayed. It was further observed that compared to 

Stone Wool insulation, Hemp insulation could reduce the frequency and likelihood of 

condensation effectively. On the other hand, once vapour pressure was reduced, 

relative humidity decayed at a lower rate in Hemp insulation than in Stone Wool 

insulation. This property of hemp fibre may be utilised to maintain steady internal 

relative humidity by means of moisture buffering. The better moisture management 

capacity of hemp insulation, combined with its carbon-negative credential, may 

potentially contribute to low-energy and robust vapour open construction system. 

During the quasi steady state tests, the average equivalent thermal conductivity of 

Hemp insulation was 15.8% higher than the manufacturers’ declared value and that 

of Stone Wool insulation was 1.3% higher than the manufacturers’ declared value. 

During the dynamic tests, the average equivalent thermal conductivity of Hemp 

insulation was similar to manufacturers’ declared value while that of Stone Wool 

insulation was 39.5% higher than manufacturers’ declared value. Although the quasi 



state tests demonstrate the hygrothermal tolerance of the insulations, dynamic 

conditions are more representative of the  reality. The hygrothermal behaviour of the 

insulations during the tests indicates that in a vapour open wall, the equivalent 

thermal conductivity in Stone Wool insulation is plausibly governed by enthalpy flow 

and phase change during condensation while the equivalent thermal conductivity in 

hemp insulation increases as a function of the increase in adsorbed moisture 

content. 
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