665 research outputs found

    Infection and Transmission of Rift Valley Fever Viruses Lacking the NSs and/or NSm Genes in Mosquitoes: Potential Role for NSm in Mosquito Infection

    Get PDF
    Rift Valley fever virus is transmitted mainly by mosquitoes and causes disease in humans and animals throughout Africa and the Arabian Peninsula. The impact of disease is large in terms of human illness and mortality, and economic impact on the livestock industry. For these reasons, and because there is a risk of this virus spreading to Europe and North America, it is important to develop a vaccine that is stable, safe and effective in preventing infection. Potential vaccine viruses have been developed through deletion of two genes (NSs and NSm) affecting virus virulence. Because this virus is normally transmitted by mosquitoes we must determine the effects of the deletions in these vaccine viruses on their ability to infect and be transmitted by mosquitoes. An optimal vaccine virus would not infect or be transmitted. The viruses were tested in two mosquito species: Aedes aegypti and Culex quinquefasciatus. Deletion of the NSm gene reduced infection of Ae. aegypti mosquitoes indicating a role for the NSm protein in mosquito infection. The virus with deletion of both NSs and NSm genes was the best vaccine candidate since it did not infect Ae. aegypti and showed reduced infection and transmission rates in Cx. quinquefasciatus

    What work has to be done to implement collaborative care for depression? Process evaluation of a trial utilizing the Normalization Process Model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a considerable evidence base for 'collaborative care' as a method to improve quality of care for depression, but an acknowledged gap between efficacy and implementation. This study utilises the Normalisation Process Model (NPM) to inform the process of implementation of collaborative care in both a future full-scale trial, and the wider health economy.</p> <p>Methods</p> <p>Application of the NPM to qualitative data collected in both focus groups and one-to-one interviews before and after an exploratory randomised controlled trial of a collaborative model of care for depression.</p> <p>Results</p> <p>Findings are presented as they relate to the four factors of the NPM (interactional workability, relational integration, skill-set workability, and contextual integration) and a number of necessary tasks are identified. Using the model, it was possible to observe that predictions about necessary work to implement collaborative care that could be made from analysis of the pre-trial data relating to the four different factors of the NPM were indeed borne out in the post-trial data. However, additional insights were gained from the post-trial interview participants who, unlike those interviewed before the trial, had direct experience of a novel intervention. The professional freedom enjoyed by more senior mental health workers may work both for and against normalisation of collaborative care as those who wish to adopt new ways of working have the freedom to change their practice but are not obliged to do so.</p> <p>Conclusions</p> <p>The NPM provides a useful structure for both guiding and analysing the process by which an intervention is optimized for testing in a larger scale trial or for subsequent full-scale implementation.</p

    Host Alternation Is Necessary to Maintain the Genome Stability of Rift Valley Fever Virus

    Get PDF
    Arthropod-borne viruses are transmitted among vertebrate hosts by insect vectors. Unusually, Rift Valley fever virus (RVFV) can also be transmitted by direct contacts of animals/humans with infectious tissues. What are the molecular mechanisms and evolutionary events leading to adopt one mode of transmission rather than the other? Viral replication is implied to be different in a vertebrate host and an invertebrate host. The alternating host cycle tends to limit virus evolution by adopting a compromise fitness level for replication in both hosts. To test this hypothesis, we used a cell culture model system to study the evolution of RVFV. We found that freeing RVFV from alternating replication in mammalian and mosquito cells led to large deletions in the NSs gene carrying the virulence factor. Resulting NSs-truncated viruses were able to protect mice from a challenge with a virulent RVFV. Thus, in nature, virulence is likely maintained by continuous alternating passages between vertebrates and insects. Thereby, depending on the mode of transmission adopted, the evolution of RVFV will be of major importance to predict the outcome of outbreaks

    Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption

    Get PDF
    Type 1 interferons (IFN-I) are potent innate antiviral effectors that constrain HIV-1 transmission. However, harnessing these cytokines for HIV-1 cure strategies has been hampered by an incomplete understanding of their antiviral activities at later stages of infection. Here, we characterized the IFN-I sensitivity of 500 clonally derived HIV-1 isolates from the plasma and CD4+ T cells of 26 individuals sampled longitudinally after transmission or after antiretroviral therapy (ART) and analytical treatment interruption. We determined the concentration of IFNΞ±2 and IFNΞ² that reduced viral replication in vitro by 50% (IC50) and found consistent changes in the sensitivity of HIV-1 to IFN-I inhibition both across individuals and over time. Resistance of HIV-1 isolates to IFN-I was uniformly high during acute infection, decreased in all individuals in the first year after infection, was reacquired concomitant with CD4+ T cell loss, and remained elevated in individuals with accelerated disease. HIV-1 isolates obtained by viral outgrowth during suppressive ART were relatively IFN-I sensitive, resembling viruses circulating just before ART initiation. However, viruses that rebounded after treatment interruption displayed the highest degree of IFNΞ±2 and IFNΞ² resistance observed at any time during the infection course. These findings indicate a dynamic interplay between host innate responses and the evolving HIV-1 quasispecies, with the relative contribution of IFN-I to HIV-1 control affected by both ART and analytical treatment interruption. Although elevated at transmission, host innate pressures are the highest during viral rebound, limiting the viruses that successfully become reactivated from latency to those that are IFN-I resistant

    Assessing the effects of multiple infections and long latency in the dynamics of tuberculosis

    Get PDF
    In order to achieve a better understanding of multiple infections and long latency in the dynamics of Mycobacterium tuberculosis infection, we analyze a simple model. Since backward bifurcation is well documented in the literature with respect to the model we are considering, our aim is to illustrate this behavior in terms of the range of variations of the model's parameters. We show that backward bifurcation disappears (and forward bifurcation occurs) if: (a) the latent period is shortened below a critical value; and (b) the rates of super-infection and re-infection are decreased. This result shows that among immunosuppressed individuals, super-infection and/or changes in the latent period could act to facilitate the onset of tuberculosis. When we decrease the incubation period below the critical value, we obtain the curve of the incidence of tuberculosis following forward bifurcation; however, this curve envelops that obtained from the backward bifurcation diagram

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pTβ‰₯20 GeV and pseudorapidities {pipe}Ξ·{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}Ξ·{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}Ξ·{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. Β© 2013 CERN for the benefit of the ATLAS collaboration

    Generating inner ear organoids containing putative cochlear hair cells from human pluripotent stem cells

    Get PDF
    In view of the prevalence of sensorineural hearing defects in an ageing population, the development of protocols to generate cochlear hair cells and their associated sensory neurons as tools to further our understanding of inner ear development are highly desirable. We report herein a robust protocol for the generation of both vestibular and cochlear hair cells from human pluripotent stem cells which represents an advance over currently available methods that have been reported to generate vestibular hair cells only. Generating otic organoids from human pluripotent stem cells using a three-dimensional culture system, we show formation of both types of sensory hair cells bearing stereociliary bundles with active mechano-sensory ion channels. These cells share many morphological characteristics with their in vivo counterparts during embryonic development of the cochlear and vestibular organs and moreover demonstrate electrophysiological activity detected through single-cell patch clamping. Collectively these data represent an advance in our ability to generate cells of an otic lineage and will be useful for building models of the sensory regions of the cochlea and vestibule

    Rift Valley Fever Virus NSs Protein Promotes Post-Transcriptional Downregulation of Protein Kinase PKR and Inhibits eIF2Ξ± Phosphorylation

    Get PDF
    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-Ξ² mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or Ξ±-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)–mediated eukaryotic initiation factor (eIF)2Ξ± phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2Ξ± accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2Ξ± phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2Ξ± phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts
    • …
    corecore