367 research outputs found

    Gesture analysis for physics education researchers

    Full text link
    Systematic observations of student gestures can not only fill in gaps in students' verbal expressions, but can also offer valuable information about student ideas, including their source, their novelty to the speaker, and their construction in real time. This paper provides a review of the research in gesture analysis that is most relevant to physics education researchers and illustrates gesture analysis for the purpose of better understanding student thinking about physics.Comment: 14 page

    Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids

    Get PDF
    The objective of this study was to evaluate local molecular adaptations proposed to regulate protein synthesis in the mammary glands. It was hypothesized that AA and energy-yielding substrates independently regulate AA metabolism and protein synthesis in mammary glands by a combination of systemic and local mechanisms. Six primiparous mid-lactation Holstein cows with ruminal cannulas were randomly assigned to 4 treatment sequences in a replicated incomplete 4 x 4 Latin square design experiment. Treatments were abomasal infusions of casein and starch in a 2 x 2 factorial arrangement. All animals received the same basal diet (17.6% crude protein and 6.61 MJ of net energy for lactation/kg of DM) throughout the study. Cows were restricted to 70% of ad libitum intake and abomasally infused for 36 h with water, casein (0.86 kg/d), starch (2 kg/d), or a combination (2 kg/d starch + 0.86 kg/d casein) using peristaltic pumps. Milk yields and composition were assessed throughout the study. Arterial and venous plasma samples were collected every 20 min during the last 8 h of infusion to assess mammary uptake. Mammary biopsy samples were collected at the end of each infusion and assessed for the phosphorylation state of selected intracellular signaling molecules that regulate protein synthesis. Animals infused with casein had increased arterial concentrations of AA, increased mammary extraction of AA from plasma, either no change or a trend for reduced mammary AA clearance rates, and no change in milk protein yield. Animals infused with starch had increased milk and milk protein yields, increased mammary plasma flow, reduced arterial concentrations of AA, and increased mammary clearance rates and net uptake of some AA. Infusions of starch increased plasma concentrations of glucose, insulin, and insulin-like growth factor-I. Starch infusions increased phosphorylation of ribosomal protein S6 and endothelial nitric oxide synthase, consistent with changes in milk protein yields and plasma flow, respectively. Phosphorylation of the mammalian target of rapamycin was increased in response to starch only when casein was also infused. Thus, cell signaling molecules involved in the regulation of protein synthesis differentially responded to these nutritional stimuli. The hypothesized independent effects of casein and starch on animal metabolism and cell signaling were not observed, presumably because of the lack of a milk protein response to infused casein

    Pulse shape analysis of signals from BaF2 and CeF3 scintillators for neutron capture experiments

    Get PDF
    The scope of this work is to study the characteristics of BaF2 and CeF3 signals using fast digitizers, which allow the sampling of the signal at very high frequencies and the application of the fitting method for analysis of the recorded pulses. By this procedure particle identification and the reconstruction of pile-up events can be improved, while maintaining the energy and time-of-flight resolution as compared to traditional methods. The reliability of the technique and problems connected with data acquisition are discussed with respect to accurate measurements of neutron capture cross-sections

    Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF

    Get PDF
    Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated

    Present Status and Future Programs of the n_TOF Experiment

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented

    Resonance capture cross section of 207Pb

    Get PDF
    The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.Comment: 7 pages, 3 figures, to be published in Phys. Rev.

    Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons

    Get PDF
    © SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio

    Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF

    Get PDF
    The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards

    Measurement of the Ge 70 (n,γ) cross section up to 300 keV at the CERN n-TOF facility

    Get PDF
    ©2019 American Physical Society.Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on Ge70, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n-TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT=5 keV to kT=100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sections are in agreement with Walter and Beer (1985) over most of the neutron energy range covered, while they are systematically smaller for neutron energies above 150 keV. We have calculated isotopic abundances produced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60-80.Peer reviewedFinal Published versio
    corecore