261 research outputs found

    Pollutant dispersion in a developing valley cold-air pool

    Get PDF
    Pollutants are trapped and accumulate within cold-air pools, thereby affecting air quality. A numerical model is used to quantify the role of cold-air-pooling processes in the dispersion of air pollution in a developing cold-air pool within an alpine valley under decoupled stable conditions. Results indicate that the negatively buoyant downslope flows transport and mix pollutants into the valley to depths that depend on the temperature deficit of the flow and the ambient temperature structure inside the valley. Along the slopes, pollutants are generally entrained above the cold-air pool and detrained within the cold-air pool, largely above the ground-based inversion layer. The ability of the cold-air pool to dilute pollutants is quantified. The analysis shows that the downslope flows fill the valley with air from above, which is then largely trapped within the cold-air pool, and that dilution depends on where the pollutants are emitted with respect to the positions of the top of the ground-based inversion layer and cold-air pool, and on the slope wind speeds. Over the lower part of the slopes, the cold-air-pool-averaged concentrations are proportional to the slope wind speeds where the pollutants are emitted, and diminish as the cold-air pool deepens. Pollutants emitted within the ground-based inversion layer are largely trapped there. Pollutants emitted farther up the slopes detrain within the cold-air pool above the ground-based inversion layer, although some fraction, increasing with distance from the top of the slopes, penetrates into the ground-based inversion layer.Peer reviewe

    The MACHO Project Large Magellanic Cloud Variable Star Inventory. VIII. The Recent Star Formation History of the LMC from the Cepheid Period Distribution

    Get PDF
    We present an analysis of the period distribution of ∼1800\sim 1800 Cepheids in the Large Magellanic Cloud, based on data obtained by the MACHO microlensing experiment and on a previous catalogue by Payne-Gaposchkin. Using stellar evolution and pulsation models, we construct theoretical period-frequency distributions that are compared to the observations. These models reveal that a significant burst of star formation has occurred recently in the LMC (∼1.15×108\sim 1.15\times 10^8 years). We also show that during the last ∼108\sim 10^8 years, the main center of star formation has been propagating from SE to NW along the bar. We find that the evolutionary masses of Cepheids are still smaller than pulsation masses by ∼7\sim 7 % and that the red edge of the Cepheid instability strip could be slightly bluer than indicated by theory. There are ∼600\sim 600 Cepheids with periods below ∼2.5\sim 2.5 days cannot be explained by evolution theory. We suggest that they are anomalous Cepheids; a number of these stars are double-mode Cepheids

    Dynamics of Endoreplication during Drosophila Posterior Scutellar Macrochaete Development

    Get PDF
    Endoreplication is a variant type of DNA replication, consisting only of alternating G1 and S phases. Many types of Drosophila tissues undergo endoreplication. However, the timing and the extent to which a single endocycling macrochaete undergoes temporally programmed endoreplication during development are unclear. Here, we focused on the dynamics of endoreplication during posterior scutellar (pSC) macrochaete development. Quantitative analyses of C values in shaft cells and socket cells revealed a gradual rise from 8C and 4C at 8 hours after pupal formation (APF) to 72C and 24C at 29 hours APF, respectively. The validity of the values was further confirmed by the measurement of DNA content with a confocal laser microscope. BrdU incorporation assays demonstrated that shaft cells undergo four rounds of endoreplication from 18 to 29.5 hours APF. In contrast, socket cells undergo two rounds of endoreplication during the same period. Statistical analyses showed that the theoretical C values, based on BrdU assays, nearly coincide with the actually measured C values in socket cells, but not in shaft cells after 22 hours APF. These analyses suggest that socket cells undergo two rounds of endoreplication. However, the mechanism of endoreplication in the shaft cells may change from 22 hours APF, suggesting the possibility that shaft cells undergo two or four rounds of endoreplication during the periods. We also found that the timing of endoreplication differs, depending on the type of macrochaete. Moreover, endocycling in shaft cells of both the left and right sides of pSC bristle lineages occurs in the same pattern, indicating that the process is synchronized for specific types of macrochaete. Our findings suggest that endocycling in macrochaete cell lineages can be a model for understanding mechanisms of endoreplication at the single-cell level

    DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Charting the interactions among genes and among their protein products is essential for understanding biological systems. A flood of interaction data is emerging from high throughput technologies, computational approaches, and literature mining methods. Quick and efficient access to this data has become a critical issue for biologists. Several excellent multi-organism databases for gene and protein interactions are available, yet most of these have understandable difficulty maintaining comprehensive information for any one organism. No single database, for example, includes all available interactions, integrated gene expression data, and comprehensive and searchable gene information for the important model organism, <it>Drosophila melanogaster</it>.</p> <p>Description</p> <p>DroID, the <it>Drosophila </it>Interactions Database, is a comprehensive interactions database designed specifically for <it>Drosophila</it>. DroID houses published physical protein interactions, genetic interactions, and computationally predicted interactions, including interologs based on data for other model organisms and humans. All interactions are annotated with original experimental data and source information. DroID can be searched and filtered based on interaction information or a comprehensive set of gene attributes from Flybase. DroID also contains gene expression and expression correlation data that can be searched and used to filter datasets, for example, to focus a study on sub-networks of co-expressed genes. To address the inherent noise in interaction data, DroID employs an updatable confidence scoring system that assigns a score to each physical interaction based on the likelihood that it represents a biologically significant link.</p> <p>Conclusion</p> <p>DroID is the most comprehensive interactions database available for <it>Drosophila</it>. To facilitate downstream analyses, interactions are annotated with original experimental information, gene expression data, and confidence scores. All data in DroID are freely available and can be searched, explored, and downloaded through three different interfaces, including a text based web site, a Java applet with dynamic graphing capabilities (IM Browser), and a Cytoscape plug-in. DroID is available at <url>http://www.droidb.org</url>.</p

    Transcriptional Rewiring, Adaptation, and the Role of Gene Duplication in the Metabolism of Ethanol of Saccharomyces cerevisiae

    Get PDF
    Ethanol is the main by-product of yeast sugar fermentation that affects microbial growth parameters, being considered a dual molecule, a nutrient and a stressor. Previous works demonstrated that the budding yeast arose after an ancient hybridization process resulted in a tier of duplicated genes within its genome, many of them with implications in this ethanol 'produce-accumulate-consume' strategy. The evolutionary link between ethanol production, consumption, and tolerance versus ploidy and stability of the hybrids is an ongoing debatable issue. The implication of ancestral duplicates in this metabolic rewiring, and how these duplicates differ transcriptionally, remains unsolved. Here, we study the transcriptomic adaptive signatures to ethanol as a nonfermentative carbon source to sustain clonal yeast growth by experimental evolution, emphasizing the role of duplicated genes in the adaptive process. As expected, ethanol was able to sustain growth but at a lower rate than glucose. Our results demonstrate that in asexual populations a complete transcriptomic rewiring was produced, strikingly by downregulation of duplicated genes, mainly whole-genome duplicates, whereas small-scale duplicates exhibited significant transcriptional divergence between copies. Overall, this study contributes to the understanding of evolution after gene duplication, linking transcriptional divergence with duplicates' fate in a multigene trait as ethanol tolerance

    CCL28 Induces Mucosal Homing of HIV-1-Specific IgA-Secreting Plasma Cells in Mice Immunized with HIV-1 Virus-Like Particles

    Get PDF
    Mucosae-associated epithelial chemokine (MEC or CCL28) binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs) in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1IIIB Virus-like particles (VLPs). Mice receiving either HIV-1IIIB VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19+ splenocytes of HIV-1IIIB VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1IIIB VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines

    Role of Toll-Like Receptor (TLR) 2 in Experimental Bacillus cereus Endophthalmitis

    Get PDF
    Bacillus cereus causes a uniquely rapid and blinding intraocular infection, endophthalmitis. B. cereus replicates in the eye, synthesizes numerous toxins, and incites explosive intraocular inflammation. The mechanisms involved in the rapid and explosive intraocular immune response have not been addressed. Because Toll-like receptors (TLRs) are integral to the initial recognition of organisms during infection, we hypothesized that the uniquely explosive immune response observed during B. cereus endophthalmitis is directly influenced by the presence of TLR2, a known Gram-positive pathogen recognition receptor. To address this hypothesis, we compared the courses of experimental B. cereus endophthalmitis in wild type C57BL/6J mice to that of age-matched homozygous TLR2-/- mice. Output parameters included analysis of bacterial growth, inflammatory cell (PMN) infiltration, cytokine/chemokine kinetics, retinal function testing, and histology, with N≥4 eyes/assay/time point/mouse strain. B. cereus grew at similar rates to108 CFU/eye by 12 h, regardless of the mouse strain. Retinal function was preserved to a greater degree in infected TLR2-/- eyes compared to that of infected wild type eyes, but infected eyes of both mouse strains lost significant function. Retinal architecture was preserved in infected TLR2-/- eyes, with limited retinal and vitreal cellular infiltration compared to that of infected wild type eyes. Ocular myeloperoxidase activities corroborated these results. In general, TNFα, IFNγ, IL6, and KC were detected in greater concentrations in infected wild type eyes than in infected TLR2-/- eyes. The absence of TLR2 resulted in decreased intraocular proinflammatory cytokine/chemokine levels and altered recruitment of inflammatory cells into the eye, resulting in less intraocular inflammation and preservation of retinal architecture, and a slightly greater degree of retinal function. These results demonstrate TLR2 is an important component of the initial ocular response to B. cereus endophthalmitis

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb−1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of μμ\mu \mu and eμe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    Local Network Topology in Human Protein Interaction Data Predicts Functional Association

    Get PDF
    The use of high-throughput techniques to generate large volumes of protein-protein interaction (PPI) data has increased the need for methods that systematically and automatically suggest functional relationships among proteins. In a yeast PPI network, previous work has shown that the local connection topology, particularly for two proteins sharing an unusually large number of neighbors, can predict functional association. In this study we improved the prediction scheme by developing a new algorithm and applied it on a human PPI network to make a genome-wide functional inference. We used the new algorithm to measure and reduce the influence of hub proteins on detecting function-associated protein pairs. We used the annotations of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as benchmarks to compare and evaluate the function relevance. The application of our algorithms to human PPI data yielded 4,233 significant functional associations among 1,754 proteins. Further functional comparisons between them allowed us to assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false discovery rates of <21% for KEGG and <30% for GO. We clustered 1,729 proteins by their functional associations and made functional inferences from detailed analysis on one subcluster highly enriched in the TGF-β signaling pathway (P<10−50). Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and provides a reliable method for large-scale functional annotation in this post-genomic era
    • …
    corecore