2,338 research outputs found
Recommended from our members
Genetic variation in the HLA region is associated with susceptibility to herpes zoster.
Herpes zoster, commonly referred to as shingles, is caused by the varicella zoster virus (VZV). VZV initially manifests as chicken pox, most commonly in childhood, can remain asymptomatically latent in nerve tissues for many years and often re-emerges as shingles. Although reactivation may be related to immune suppression, aging and female sex, most inter-individual variability in re-emergence risk has not been explained to date. We performed a genome-wide association analyses in 22,981 participants (2280 shingles cases) from the electronic Medical Records and Genomics Network. Using Cox survival and logistic regression, we identified a genomic region in the combined and European ancestry groups that has an age of onset effect reaching genome-wide significance (P>1.0 × 10(-8)). This region tags the non-coding gene HCP5 (HLA Complex P5) in the major histocompatibility complex. This gene is an endogenous retrovirus and likely influences viral activity through regulatory functions. Variants in this genetic region are known to be associated with delay in development of AIDS in people infected by HIV. Our study provides further suggestion that this region may have a critical role in viral suppression and could potentially harbor a clinically actionable variant for the shingles vaccine
How and When Socially Entrepreneurial Nonprofit Organizations Benefit From Adopting Social Alliance Management Routines to Manage Social Alliances?
Social alliance is defined as the collaboration between for-profit and nonprofit organizations. Building on the insights derived from the resource-based theory, we develop a conceptual framework to explain how socially entrepreneurial nonprofit organizations (SENPOs) can improve their social alliance performance by adopting strategic alliance management routines. We test our framework using the data collected from 203 UK-based SENPOs in the context of cause-related marketing campaign-derived social alliances. Our results confirm a positive relationship between social alliance management routines and social alliance performance. We also find that relational mechanisms, such as mutual trust, relational embeddedness, and relational commitment, mediate the relationship between social alliance management routines and social alliance performance. Moreover, our findings suggest that different types of social alliance motivation can influence the impact of social alliance management routines on different types of the relational mechanisms. In general, we demonstrate that SENPOs can benefit from adopting social alliance management routines and, in addition, highlight how and when the social alliance management routines–social alliance performance relationship might be shaped. Our study offers important academic and managerial implications, and points out future research directions
The influence of caffeine on energy content of sugar-sweetened beverages : the caffeine–calorie effect
Background/Objectives: Caffeine is a mildly addictive psychoactive chemical and controversial additive to sugar-sweetened beverages (SSBs). The objective of this study is to assess if removal of caffeine from SSBs allows co-removal of sucrose (energy) without affecting flavour of SSBs, and if removal of caffeine could potentially affect population weight gain. Subjects/Methods: The research comprised of three studies; study 1 used three-alternate forced choice and paired comparison tests to establish detection thresholds for caffeine in water and sucrose solution (subjects, n ¼ 63), and to determine if caffeine suppressed sweetness. Study 2 (subjects, n ¼ 30) examined the proportion of sucrose that could be co-removed with caffeine from SSBs without affecting the flavour of the SSBs. Study 3 applied validated coefficients to estimate the impact on the weight of the United States population if there was no caffeine in SSBs. Results: Detection threshold for caffeine in water was higher (1.09±0.08 mM) than the detection threshold for caffeine in sucrose solution (0.49 ± 0.04 mM), and a paired comparison test revealed caffeine significantly reduced the sweetness of sucrose (Po0.001). Removing caffeine from SSBs allowed co-removal of 10.3% sucrose without affecting flavour of the SSBs, equating to 116 kJ per 500 ml serving. The effect of this on body weight in adults and children would be 0.600 and 0.142 kg, which are equivalent to 2.08 and 1.10 years of observed existing trends in weight gain, respectively. Conclusion: These data suggest the extra energy in SSBs as a result of caffeine's effect on sweetness may be associated with adult and child weight gain
A cluster-randomised, controlled trial to assess the impact of a workplace osteoporosis prevention intervention on the dietary and physical activity behaviours of working women: study protocol
Background Osteoporosis is a debilitating disease and its risk can be reduced through adequate calcium consumption and physical activity. This protocol paper describes a workplace-based intervention targeting behaviour change in premenopausal women working in sedentary occupations. Method/Design A cluster-randomised design was used, comparing the efficacy of a tailored intervention to standard care. Workplaces were the clusters and units of randomisation and intervention. Sample size calculations incorporated the cluster design. Final number of clusters was determined to be 16, based on a cluster size of 20 and calcium intake parameters (effect size 250 mg, ICC 0.5 and standard deviation 290 mg) as it required the highest number of clusters. Sixteen workplaces were recruited from a pool of 97 workplaces and randomly assigned to intervention and control arms (eight in each). Women meeting specified inclusion criteria were then recruited to participate. Workplaces in the intervention arm received three participatory workshops and organisation wide educational activities. Workplaces in the control/standard care arm received print resources. Intervention workshops were guided by self-efficacy theory and included participatory activities such as goal setting, problem solving, local food sampling, exercise trials, group discussion and behaviour feedback. Outcomes measures were calcium intake (milligrams/day) and physical activity level (duration: minutes/week), measured at baseline, four weeks and six months post intervention. Discussion This study addresses the current lack of evidence for behaviour change interventions focussing on osteoporosis prevention. It addresses missed opportunities of using workplaces as a platform to target high-risk individuals with sedentary occupations. The intervention was designed to modify behaviour levels to bring about risk reduction. It is the first to address dietary and physical activity components each with unique intervention strategies in the context of osteoporosis prevention. The intervention used locally relevant behavioural strategies previously shown to support good outcomes in other countries. The combination of these elements have not been incorporated in similar studies in the past, supporting the study hypothesis that the intervention will be more efficacious than standard practice in osteoporosis prevention through improvements in calcium intake and physical activity
Can We Really Prevent Suicide?
Every year, suicide is among the top 20 leading causes of death globally for all ages. Unfortunately, suicide is difficult to prevent, in large part because the prevalence of risk factors is high among the general population. In this review, clinical and psychological risk factors are examined and methods for suicide prevention are discussed. Prevention strategies found to be effective in suicide prevention
include means restriction, responsible media coverage, and general public education, as well identification methods such as screening, gatekeeper training, and primary care physician education. Although the treatment for preventing suicide is difficult, follow-up that includes pharmacotherapy, psychotherapy, or both may be useful. However, prevention methods cannot be restricted to the individual. Community, social, and policy interventions will also be essentia
Strong interface-induced spin-orbit coupling in graphene on WS2
Interfacial interactions allow the electronic properties of graphene to be
modified, as recently demonstrated by the appearance of satellite Dirac cones
in the band structure of graphene on hexagonal boron nitride (hBN) substrates.
Ongoing research strives to explore interfacial interactions in a broader class
of materials in order to engineer targeted electronic properties. Here we show
that at an interface with a tungsten disulfide (WS2) substrate, the strength of
the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The
induced SOI leads to a pronounced low-temperature weak anti-localization (WAL)
effect, from which we determine the spin-relaxation time. We find that
spin-relaxation time in graphene is two-to-three orders of magnitude smaller on
WS2 than on SiO2 or hBN, and that it is comparable to the intervalley
scattering time. To interpret our findings we have performed first-principle
electronic structure calculations, which both confirm that carriers in
graphene-on-WS2 experience a strong SOI and allow us to extract a
spin-dependent low-energy effective Hamiltonian. Our analysis further shows
that the use of WS2 substrates opens a possible new route to access topological
states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines.
Final version with expanded discussion of the relation between theory and
experiments to be published in Nature Communication
Characterization of complex networks: A survey of measurements
Each complex network (or class of networks) presents specific topological
features which characterize its connectivity and highly influence the dynamics
of processes executed on the network. The analysis, discrimination, and
synthesis of complex networks therefore rely on the use of measurements capable
of expressing the most relevant topological features. This article presents a
survey of such measurements. It includes general considerations about complex
network characterization, a brief review of the principal models, and the
presentation of the main existing measurements. Important related issues
covered in this work comprise the representation of the evolution of complex
networks in terms of trajectories in several measurement spaces, the analysis
of the correlations between some of the most traditional measurements,
perturbation analysis, as well as the use of multivariate statistics for
feature selection and network classification. Depending on the network and the
analysis task one has in mind, a specific set of features may be chosen. It is
hoped that the present survey will help the proper application and
interpretation of measurements.Comment: A working manuscript with 78 pages, 32 figures. Suggestions of
measurements for inclusion are welcomed by the author
The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain
Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA
Esperanto for histones : CENP-A, not CenH3, is the centromeric histone H3 variant
The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres
- …
