277 research outputs found
Constraints on the nonuniversal Z^\prime couplings from B\to\pi K, \pi K^{\ast} and \rho K Decays
Motivated by the large difference between the direct CP asymmetries
and , we
combine the up-to-date experimental information on ,
and decays to pursue possible solutions with the nonuniversal
model. Detailed analyses of the relative impacts of different
types of couplings are presented in four specific cases. Numerically, we find
that the new coupling parameters, and with a common
nontrivial new weak phase , which are relevant to the
contributions to the electroweak penguin sector
and , are crucial to the observed " puzzle". Furthermore,
they are found to be definitely unequal and opposite in sign. We also find that
can put a strong constraint on the new
couplings, which implies the contributions to the coefficient of
QCD penguins operator involving the parameter required.Comment: 27 pages, 6 figures. References and a note adde
Effective action in spherical domains
The effective action on an orbifolded sphere is computed for minimally
coupled scalar fields. The results are presented in terms of derivatives of
Barnes zeta-functions and it is shown how these may be evaluated. Numerical
values are shown. An analytical, heat-kernel derivation of the Ces\`aro-Fedorov
formula for the number of symmetry planes of a regular solid is also presented.Comment: 18 pages, Plain TeX (Mailer oddities possibly corrected.
Constraints on dark matter particles charged under a hidden gauge group from primordial black holes
In order to accommodate increasingly tighter observational constraints on
dark matter, several models have been proposed recently in which dark matter
particles are charged under some hidden gauge group. Hidden gauge charges are
invisible for the standard model particles, hence such scenarios are very
difficult to constrain directly. However black holes are sensitive to all gauge
charges, whether they belong to the standard model or not. Here, we examine the
constraints on the possible values of the dark matter particle mass and hidden
gauge charge from the evolution of primordial black holes. We find that the
existence of the primordial black holes with reasonable mass is incompatible
with dark matter particles whose charge to mass ratio is of the order of one.
For dark matter particles whose charge to mass ratio is much less than one, we
are able to exclude only heavy dark matter in the mass range of 10^(11) GeV -
10^(16) GeV. Finally, for dark matter particles whose charge to mass ratio is
much greater than one, there are no useful limits coming from primordial black
holes.Comment: accepted for publication in JCA
Quantum Computing of Quantum Chaos in the Kicked Rotator Model
We investigate a quantum algorithm which simulates efficiently the quantum
kicked rotator model, a system which displays rich physical properties, and
enables to study problems of quantum chaos, atomic physics and localization of
electrons in solids. The effects of errors in gate operations are tested on
this algorithm in numerical simulations with up to 20 qubits. In this way
various physical quantities are investigated. Some of them, such as second
moment of probability distribution and tunneling transitions through invariant
curves are shown to be particularly sensitive to errors. However,
investigations of the fidelity and Wigner and Husimi distributions show that
these physical quantities are robust in presence of imperfections. This implies
that the algorithm can simulate the dynamics of quantum chaos in presence of a
moderate amount of noise.Comment: research at Quantware MIPS Center http://www.quantware.ups-tlse.fr,
revtex 11 pages, 13 figs, 2 figs and discussion adde
On Optimizing Locally Linear Nearest Neighbour Reconstructions Using Prototype Reduction Schemes
This paper concerns the use of Prototype Reduction Schemes (PRS) to optimize the computations involved in typical k-Nearest Neighbor (k-NN) rules. These rules have been successfully used for decades in statistical Pattern Recognition (PR) applications, and have numerous applications because of their known error bounds. For a given data point of unknown identity, the k-NN possesses the phenomenon that it combines the information about the samples from a priori target classes (values) of selected neighbors to, for example, predict the target class of the tested sample. Recently, an implementation of the k-NN, named as the Locally Linear Reconstruction (LLR) [11], has been proposed. The salient feature of the latter is that by invoking a quadratic optimization process, it is capable of systematically setting model parameters, such as the number of neighbors (specified by the parameter, k) and the weights. However, the LLR takes more time than other conventional methods when it has to be applied to classification tasks. To overcome this problem, we propose a strategy of using a PRS to efficiently compute the optimization problem. In this paper, we demonstrate, first of all, that by completely discarding the points not included by the PRS, we can obtain a reduced set of sample points, using which, in turn, the quadratic optimization problem can be computed far more expediently. The values of the corresponding indices are comparable to those obtained with the original training set (i.e., the one which considers all the data points) even though the computations required to obtain the prototypes and the corresponding classification accuracies are noticeably less. The proposed method has been tested on artificial and real-life data sets, and the results obtained are very promising, and has potential in PR applications
Proximity effect at superconducting Sn-Bi2Se3 interface
We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions
down to 250 mK and in different magnetic fields. A number of conductance
anomalies were observed below the superconducting transition temperature of Sn,
including a small gap different from that of Sn, and a zero-bias conductance
peak growing up at lower temperatures. We discussed the possible origins of the
smaller gap and the zero-bias conductance peak. These phenomena support that a
proximity-effect-induced chiral superconducting phase is formed at the
interface between the superconducting Sn and the strong spin-orbit coupling
material Bi2Se3.Comment: 7 pages, 8 figure
Centrality Dependence of the High p_T Charged Hadron Suppression in Au+Au collisions at sqrt(s_NN) = 130 GeV
PHENIX has measured the centrality dependence of charged hadron p_T spectra
from central Au+Au collisions at sqrt(s_NN)=130 GeV. The truncated mean p_T
decreases with centrality for p_T > 2 GeV/c, indicating an apparent reduction
of the contribution from hard scattering to high p_T hadron production. For
central collisions the yield at high p_T is shown to be suppressed compared to
binary nucleon-nucleon collision scaling of p+p data. This suppression is
monotonically increasing with centrality, but most of the change occurs below
30% centrality, i.e. for collisions with less than about 140 participating
nucleons. The observed p_T and centrality dependence is consistent with the
particle production predicted by models including hard scattering and
subsequent energy loss of the scattered partons in the dense matter created in
the collisions.Comment: 7 pages text, LaTeX, 6 figures, 2 tables, 307 authors, resubmitted to
Phys. Lett. B. Revised to address referee concerns. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/run/phenix/papers.htm
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV
We present azimuthal angle correlations of intermediate transverse momentum
(1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) =
62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is
broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and
semi-central collisions in all the systems. The broadening and peak location
are found to depend upon the number of participants in the collision, but not
on the collision energy or beam nuclei. These results are consistent with sound
or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables.
Submitted to Physical Review Letters. Plain text data tables for the points
plotted in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
- …