1,195 research outputs found

    Mojave remote sensing field experiment

    Get PDF
    The Mojave Remote Sensing Field Experiment (MFE), conducted in June 1988, involved acquisition of Thermal Infrared Multispectral Scanner (TIMS); C, L, and P-band polarimetric radar (AIRSAR) data; and simultaneous field observations at the Pisgah and Cima volcanic fields, and Lavic and Silver Lake Playas, Mojave Desert, California. A LANDSAT Thematic Mapper (TM) scene is also included in the MFE archive. TM-based reflectance and TIMS-based emissivity surface spectra were extracted for selected surfaces. Radiative transfer procedures were used to model the atmosphere and surface simultaneously, with the constraint that the spectra must be consistent with field-based spectral observations. AIRSAR data were calibrated to backscatter cross sections using corner reflectors deployed at target sites. Analyses of MFE data focus on extraction of reflectance, emissivity, and cross section for lava flows of various ages and degradation states. Results have relevance for the evolution of volcanic plains on Venus and Mars

    Universal critical temperature for Kosterlitz-Thouless transitions in bilayer quantum magnets

    Full text link
    Recent experiments show that double layer quantum Hall systems may have a ground state with canted antiferromagnetic order. In the experimentally accessible vicinity of a quantum critical point, the order vanishes at a temperature T_{KT} = \kappa H, where H is the magnetic field and \kappa is a universal number determined by the interactions and Berry phases of the thermal excitations. We present quantum Monte Carlo simulations on a model spin system which support the universality of \kappa and determine its numerical value. This allows experimental tests of an intrinsically quantum-mechanical universal quantity, which is not also a property of a higher dimensional classical critical point.Comment: 5 pages, 4 figure

    Benign cystic mesothelioma of the appendix presenting in a woman: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Benign cystic mesothelioma or peritoneal inclusion cysts are rare benign abdominal tumors usually occurring in females of reproductive age. These cysts present as abdominopelvic pain or masses but are often found on imaging or incidentally at surgery. They are commonly associated with pelvic inflammatory disease, endometriosis, or ovarian cysts. We report what is, to the best of our knowledge, the first case of a benign cystic mesothelioma complicating a presentation of acute appendicitis.</p> <p>Case Presentation</p> <p>A 19-year-old Irish Caucasian woman presented with abdominal pain. Imaging suggested appendicitis with abscess formation. She was treated with antibiotics and scheduled for interval appendicectomy. At laparoscopy, an unusual cystic mass was found arising from the appendix. Histology revealed benign cystic mesothelioma.</p> <p>Conclusion</p> <p>We report what is, to the best of our knowledge, the first case of a benign cystic mesothelioma arising from the appendix and complicating a presentation of acute appendicitis. This is a benign pathology, but recurrences are not uncommon. Benign cystic mesothelioma should be included in the differential when investigating pelvic masses or abscesses associated with either appendicitis or pelvic inflammatory disease in women.</p

    Propanil Exposure Induces Delayed but Sustained Abrogation of Cell-Mediated Immunity through Direct Interference with Cytotoxic T-Lymphocyte Effectors

    Get PDF
    The postemergent herbicide propanil (PRN; also known as 3,4-dichloropropionanilide) is used on rice and wheat crops and has well-known immunotoxic effects on various compartments of the immune system, including T-helper lymphocytes, B lymphocytes, and macrophages. It is unclear, however, whether PRN also adversely affects cytotoxic T lymphocytes (CTLs), the primary (1°) effectors of cell-mediated immunity. In this study we examined both the direct and indirect effects of PRN exposure on CTL activation and effector cell function to gauge its likely impact on cell-mediated immunity. Initial experiments addressed whether PRN alters the class I major histocompatibility complex (MHC) pathway for antigen processing and presentation by antigen-presenting cells (APCs), thereby indirectly affecting effector function. These experiments demonstrated that PRN does not impair the activation of CTLs by PRN-treated APCs. Subsequent experiments addressed whether PRN treatment of CTLs directly inhibits their activation and revealed that 1° alloreactive CTLs exposed to PRN are unimpaired in their proliferative response and only marginally inhibited in their lytic activity. Surprisingly, secondary stimulation of these alloreactive CTL effectors, however, even in the absence of further PRN exposure, resulted in complete abrogation of CTL lytic function and a delayed but significant long-term effect on CTL responsiveness. These findings may have important implications for the diagnosis and clinical management of anomalies of cell-mediated immunity resulting from environmental exposure to various herbicides and other pesticides

    Global modelling of the early Martian climate under a denser CO2 atmosphere: Water cycle and ice evolution

    Full text link
    We discuss 3D global simulations of the early Martian climate that we have performed assuming a faint young Sun and denser CO2 atmosphere. We include a self-consistent representation of the water cycle, with atmosphere-surface interactions, atmospheric transport, and the radiative effects of CO2 and H2O gas and clouds taken into account. We find that for atmospheric pressures greater than a fraction of a bar, the adiabatic cooling effect causes temperatures in the southern highland valley network regions to fall significantly below the global average. Long-term climate evolution simulations indicate that in these circumstances, water ice is transported to the highlands from low-lying regions for a wide range of orbital obliquities, regardless of the extent of the Tharsis bulge. In addition, an extended water ice cap forms on the southern pole, approximately corresponding to the location of the Noachian/Hesperian era Dorsa Argentea Formation. Even for a multiple-bar CO2 atmosphere, conditions are too cold to allow long-term surface liquid water. Limited melting occurs on warm summer days in some locations, but only for surface albedo and thermal inertia conditions that may be unrealistic for water ice. Nonetheless, meteorite impacts and volcanism could potentially cause intense episodic melting under such conditions. Because ice migration to higher altitudes is a robust mechanism for recharging highland water sources after such events, we suggest that this globally sub-zero, `icy highlands' scenario for the late Noachian climate may be sufficient to explain most of the fluvial geology without the need to invoke additional long-term warming mechanisms or an early warm, wet Mars.Comment: Minor revisions to text, one new table, figs. 1,3 11 and 18 redon

    Radar Sounding of the Medusae Fossae Formation Mars: Equatorial Ice or Dry, Low-Density Deposits?

    Get PDF
    The equatorial Medusae Fossae Formation (MFF) is enigmatic and perhaps among the youngest geologic deposits on Mars. They are thought to be composed of volcanic ash, eolian sediments, or an ice-rich material analogous to polar layered deposits. The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) instrument aboard the Mars Express Spacecraft has detected nadir echoes offset in time-delay from the surface return in orbits over MFF material. These echoes are interpreted to be from the subsurface interface between the MFF material and the underlying terrain. The delay time between the MFF surface and subsurface echoes is consistent with massive deposits emplaced on generally planar lowlands materials with a real dielectric constant of ∼2.9 ± 0.4. The real dielectric constant and the estimated dielectric losses are consistent with a substantial component of water ice. However, an anomalously low-density, ice-poor material cannot be ruled out. If ice-rich, the MFF must have a higher percentage of dust and sand than polar layered deposits. The volume of water in an ice-rich MFF deposit would be comparable to that of the south polar layered deposits

    MARSIS Subsurface Radar Sounding of Medusae Fossae Formation Deposits on Mars: Ice Rich or Ice Poor, That is the Question

    Get PDF
    Newly acquired MARSIS radar sounder data shows evidence of layering in all major units of the MFF deposits, establishing another key similarity to PLD

    MAIC-2, a latitudinal model for the Martian surface temperature, atmospheric water transport and surface glaciation

    Get PDF
    The Mars Atmosphere-Ice Coupler MAIC-2 is a simple, latitudinal model, which consists of a set of parameterisations for the surface temperature, the atmospheric water transport and the surface mass balance (condensation minus evaporation) of water ice. It is driven directly by the orbital parameters obliquity, eccentricity and solar longitude (Ls) of perihelion. Surface temperature is described by the Local Insolation Temperature (LIT) scheme, which uses a daily and latitude-dependent radiation balance. The evaporation rate of water is calculated by an expression for free convection, driven by density differences between water vapor and ambient air, the condensation rate follows from the assumption that any water vapour which exceeds the local saturation pressure condenses instantly, and atmospheric transport of water vapour is approximated by instantaneous mixing. Glacial flow of ice deposits is neglected. Simulations with constant orbital parameters show that low obliquities favour deposition of ice in high latitudes and vice versa. A transient scenario driven by a computed history of orbital parameters over the last 10 million years produces essentially monotonically growing polar ice deposits during the most recent 4 million years, and a very good agreement with the observed present-day polar layered deposits. The thick polar deposits sometimes continue in thin ice deposits which extend far into the mid latitudes, which confirms the idea of "ice ages" at high obliquity.Comment: 20 pages, 10 figures, 2 table
    corecore