3,595 research outputs found
Cosmological evolution of interacting phantom (quintessence) model in Loop Quantum Gravity
The dynamics of interacting dark energy model in loop quantum cosmology (LQC)
is studied in this paper. The dark energy has a constant equation of state
and interacts with dark matter through a form . We
find for quintessence model () the cosmological evolution in LQC is the
same as that in classical Einstein cosmology; whereas for phantom dark energy
(), although there are the same critical points in LQC and classical
Einstein cosmology, loop quantum effect reduces significantly the parameter
spacetime () required by stability. If parameters and satisfy
the conditions that the critical points are existent and stable, the universe
will enter an era dominated by dark energy and dark matter with a constant
energy ratio between them, and accelerate forever; otherwise it will enter an
oscillatory regime. Comparing our results with the observations we find at
confidence level the universe will accelerate forever.Comment: 15 pages, 8 figures, to appear in JCA
Scalar field exact solutions for non-flat FLRW cosmology: A technique from non-linear Schr\"odinger-type formulation
We report a method of solving for canonical scalar field exact solution in a
non-flat FLRW universe with barotropic fluid using non-linear Schr\"{o}dinger
(NLS)-type formulation in comparison to the method in the standard Friedmann
framework. We consider phantom and non-phantom scalar field cases with
exponential and power-law accelerating expansion. Analysis on effective
equation of state to both cases of expansion is also performed. We speculate
and comment on some advantage and disadvantage of using the NLS formulation in
solving for the exact solution.Comment: 12 pages, GERG format, Reference added. accepted by Gen. Relativ. and
Gra
Coupled dark energy: Towards a general description of the dynamics
In dark energy models of scalar-field coupled to a barotropic perfect fluid,
the existence of cosmological scaling solutions restricts the Lagrangian of the
field \vp to p=X g(Xe^{\lambda \vp}), where X=-g^{\mu\nu} \partial_\mu \vp
\partial_\nu \vp /2, is a constant and is an arbitrary function.
We derive general evolution equations in an autonomous form for this Lagrangian
and investigate the stability of fixed points for several different dark energy
models--(i) ordinary (phantom) field, (ii) dilatonic ghost condensate, and
(iii) (phantom) tachyon. We find the existence of scalar-field dominant fixed
points (\Omega_\vp=1) with an accelerated expansion in all models
irrespective of the presence of the coupling between dark energy and dark
matter. These fixed points are always classically stable for a phantom field,
implying that the universe is eventually dominated by the energy density of a
scalar field if phantom is responsible for dark energy. When the equation of
state w_\vp for the field \vp is larger than -1, we find that scaling
solutions are stable if the scalar-field dominant solution is unstable, and
vice versa. Therefore in this case the final attractor is either a scaling
solution with constant \Omega_\vp satisfying 0<\Omega_\vp<1 or a
scalar-field dominant solution with \Omega_\vp=1.Comment: 21 pages, 5 figures; minor clarifications added, typos corrected and
references updated; final version to appear in JCA
An overview of anti-diabetic plants used in Gabon: Pharmacology and Toxicology
© 2017 Elsevier B.V. All rights reserved.Ethnopharmacological relevance: The management of diabetes mellitus management in African communities, especially in Gabon, is not well established as more than 60% of population rely on traditional treatments as primary healthcare. The aim of this review was to collect and present the scientific evidence for the use of medicinal plants that are in currect by Gabonese traditional healers to manage diabetes or hyperglycaemia based here on the pharmacological and toxicological profiles of plants with anti-diabetic activity. There are presented in order to promote their therapeutic value, ensure a safer use by population and provide some bases for further study on high potential plants reviewed. Materials and methods: Ethnobotanical studies were sourced using databases such as Online Wiley library, Pubmed, Google Scholar, PROTA, books and unpublished data including Ph.D. and Master thesis, African and Asian journals. Keywords including ‘Diabetes’ ‘Gabon’ ‘Toxicity’ ‘Constituents’ ‘hyperglycaemia’ were used. Results: A total of 69 plants currently used in Gabon with potential anti-diabetic activity have been identified in the literature, all of which have been used in in vivo or in vitro studies. Most of the plants have been studied in human or animal models for their ability to reduce blood glucose, stimulate insulin secretion or inhibit carbohydrates enzymes. Active substances have been identified in 12 out of 69 plants outlined in this review, these include Allium cepa and Tabernanthe iboga. Only eight plants have their active substances tested for anti-diabetic activity and are suitables for further investigation. Toxicological data is scarce and is dose-related to the functional parameters of major organs such as kidney and liver. Conclusion: An in-depth understanding on the pharmacology and toxicology of Gabonese anti-diabetic plants is lacking yet there is a great scope for new treatments. With further research, the use of Gabonese anti-diabetic plants is important to ensure the safety of the diabetic patients in Gabon.Peer reviewedFinal Accepted Versio
Curvaton Dynamics in Brane-worlds
We study the curvaton dynamics in brane-world cosmologies. Assuming that the
inflaton field survives without decay after the end of inflation, we apply the
curvaton reheating mechanism to Randall-Sundrum and to its curvature
corrections: Gauss-Bonnet, induced gravity and combined Gauss-Bonnet and
induced gravity cosmological models. In the case of chaotic inflation and
requiring suppression of possible short-wavelength generated gravitational
waves, we constraint the parameters of a successful curvaton brane-world
cosmological model. If density perturbations are also generated by the curvaton
field then, the fundamental five-dimensional mass could be much lower than the
Planck massComment: 47 pages, 1 figure, references added, to be published in JCA
A Quintessentially Geometric Model
We consider string inspired cosmology on a solitary -brane moving in the
background of a ring of branes located on a circle of radius . The motion of
the -brane transverse to the plane of the ring gives rise to a radion field
which can be mapped to a massive non-BPS Born-Infeld type field with a cosh
potential. For certain bounds of the brane tension we find an inflationary
phase is possible, with the string scale relatively close to the Planck scale.
The relevant perturbations and spectral indices are all well within the
expected observational bounds. The evolution of the universe eventually comes
to be dominated by dark energy, which we show is a late time attractor of the
model. However we also find that the equation of state is time dependent, and
will lead to late time Quintessence.Comment: 11 pages, 3 figures. References and comments adde
Empowering Vulnerable Girls: Exploring Social Adjustment And Self Concept Among Children Of Red-Light Areas In Kolkata
This study examines the social adjustment and self-concept of marginalized girls, aged 14 to 18, residing in red-light areas of Kolkata City. Using an exploratory, qualitative research approach, the research involved 40 participants supported by two prominent NGOs—the Institute of Psychological and Educational Research (I.P.E.R.) and the Durbar Mahila Samanwaya Committee (DMSC)—which offer educational and psychological services. Purposive sampling was used to select the samples data was collected by using the Adjustment Inventory for School Students (AISS) and the Self-Concept Questionnaire (SCQ) and semi-structured interviews. Findings indicated that participants generally demonstrated a positive self-concept, particularly in education and morality, reflecting the NGOs\u27 positive influence on building self-esteem. However, the study also revealed significant difficulties with emotional and social adjustment, likely a consequence of the stigma and challenges associated with their environment. While moderate levels of social and educational adjustment were observed, emotional regulation remained a key area of concern. The research highlights the need for specialized interventions to enhance emotional well-being and social integration. While NGOs play a crucial role in fostering self-concept, there are evident gaps in addressing issues related to social adjustment
Loop Quantum Cosmology: A Status Report
The goal of this article is to provide an overview of the current state of
the art in loop quantum cosmology for three sets of audiences: young
researchers interested in entering this area; the quantum gravity community in
general; and, cosmologists who wish to apply loop quantum cosmology to probe
modifications in the standard paradigm of the early universe. An effort has
been made to streamline the material so that, as described at the end of
section I, each of these communities can read only the sections they are most
interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical
and Quantum Gravity. Typos corrected, clarifications and references adde
Fabrication and characterization of Eri silk fibers-based sponges for biomedical application
Cocoon-derived semi-domesticated Eri silk fibers still lack exploitation for tissue engineering applications due to their poor solubility using conventional methods. The present work explores the ability to process cocoon fibers of non-mulberry Eri silk (Samia/Philosamia ricini) into sponges through a green approach using ionic liquid (IL) â 1-buthyl-imidazolium acetate as a solvent. The formation of β-sheet structures during Eri silk/IL gelation was acquired by exposing the Eri silk/IL gels to a saturated atmosphere composed of two different solvents: (i) isopropanol/ethanol (physical stabilization) and (ii) genipin, a natural crosslinker, dissolved in ethanol (chemical crosslinking). The sponges were then obtained by freeze-drying. This approach promotes the formation of both stable and ordered non-crosslinked Eri silk fibroin matrices. Moreover, genipin-crosslinked silk fibroin sponges presenting high height recovery capacity after compression, high swelling degree and suitable mechanical properties for tissue engineering applications were produced. The incorporation of a model drug â ibuprofen â and the corresponding release study from the loaded sponges demonstrated the potential of using these matrices as effective drug delivery systems. The assessment of the biological performance of ATDC5 chondrocyte-like cells in contact with the developed sponges showed the promotion of cell adhesion and proliferation, as well as extracellular matrix production within two weeks of culture. Spongesâ intrinsic properties and biological findings open up their potential use for biomedical applications.The authors SSS, DSC, MBO, NMO acknowledge financial support
from Portuguese Foundation for Science and Technology –
FCT (Grants SFRH/BPD/45307/2008, SFRH/BPD/85790/2012,
SFRH/BD/71396/2010 and SFRH/BD/73172/2010, respectively),
‘‘Fundo Social Europeu” – FSE, and ‘‘Programa Diferencial de Potencial
Humano POPH”. This work is also financially supported by the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement n REGPOT-CT2012-316331-POLARIS and
from Fundação para a Ciência e Tecnologia (FCT) through the project
ENIGMA – PTDC/EQU-EPR/121491/2010. The laboratory work
of SCK is supported by Department of Biotechnology and Indian
Council of Medical Research, Govt of India. SCK and RLR acknowledge
their short visits either Institutes. SCK is also grateful to 3B´ s
Research Group- Biomaterials, Biodegradables and Biomimetics,
University of Minho, Portugal for providing facilities during his
short visit
- …
