1,075 research outputs found

    Problem of the noise-noise correlation function in hot non-Abelian plasma

    Full text link
    In this work on the basis of Kadomtsev's kinetic fluctuation theory we present the more general expression for noise-noise correlation function in effective theory for ultrasoft field modes.Comment: 3 pages, REVTeX

    The VLT-FLAMES Tarantula Survey XVIII. Classifications and radial velocities of the B-type stars

    Get PDF
    We present spectral classifications for 438 B-type stars observed as part of the VLT-FLAMES Tarantula Survey (VFTS) in the 30 Doradus region of the Large Magellanic Cloud. Radial velocities are provided for 307 apparently single stars, and for 99 targets with radial-velocity variations which are consistent with them being spectroscopic binaries. We investigate the spatial distribution of the radial velocities across the 30 Dor region, and use the results to identify candidate runaway stars. Excluding potential runaways and members of two older clusters in the survey region (SL 639 and Hodge 301), we determine a systemic velocity for 30 Dor of 271.6 ± 12.2 kms-1 from 273 presumed single stars. Employing a 3σ criterion we identify nine candidate runaway stars (2.9% of the single stars with radial-velocity estimates). The projected rotational velocities of the candidate runaways appear to be significantly different to those of the full B-type sample, with a strong preference for either large (≥345 kms-1) or small (≤65 kms-1) rotational velocities. Of the candidate runaways, VFTS 358 (classified B0.5: V) has the largest differential radial velocity (−106.9 ± 16.2 kms-1), and a preliminary atmospheric analysis finds a significantly enriched nitrogen abundance of 12 + log (N/H) ≳ 8.5. Combined with a large rotational velocity (ve sin i = 345 ± 22 kms-1), this is suggestive of past binary interaction for this star

    3-D radiative transfer in clumped hot star winds I. Influence of clumping on the resonance line formation

    Full text link
    The true mass-loss rates from massive stars are important for many branches of astrophysics. For the correct modeling of the resonance lines, which are among the key diagnostics of stellar mass-loss, the stellar wind clumping turned out to be very important. In order to incorporate clumping into radiative transfer calculation, 3-D models are required. Various properties of the clumps may have strong impact on the resonance line formation and, therefore, on the determination of empirical mass-loss rates. We incorporate the 3-D nature of the stellar wind clumping into radiative transfer calculations and investigate how different model parameters influence the resonance line formation. We develop a full 3-D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds. The number density of clumps follows the mass conservation. For the first time, realistic 3-D models that describe the dense as well as the tenuous wind components are used to model the formation of resonance lines in a clumped stellar wind. At the same time, non-monotonic velocity fields are accounted for. The 3-D density and velocity wind inhomogeneities show very strong impact on the resonance line formation. The different parameters describing the clumping and the velocity field results in different line strengths and profiles. We present a set of representative models for various sets of model parameters and investigate how the resonance lines are affected. Our 3-D models show that the line opacity is reduced for larger clump separation and for more shallow velocity gradients within the clumps. Our new model demonstrates that to obtain empirically correct mass-loss rates from the UV resonance lines, the wind clumping and its 3-D nature must be taken into account.Comment: Astronomy and Astrophysics, accepted for publicatio

    The Boltzmann equation for colourless plasmons in hot QCD plasma. Semiclassical approximation

    Full text link
    Within the framework of the semiclassical approximation, we derive the Boltzmann equation describing the dynamics of colorless plasmons in a hot QCD plasma. The probability of the plasmon-plasmon scattering at the leading order in the coupling constant is obtained. This probability is gauge-independent at least in the class of the covariant and temporal gauges. It is noted that the structure of the scattering kernel possesses important qualitative difference from the corresponding one in the Abelian plasma, in spite of the fact that we focused our study on the colorless soft excitations. It is shown that four-plasmon decay is suppressed by the power of gg relative to the process of nonlinear scattering of plasmons by thermal particles at the soft momentum scale. It is stated that the former process becomes important in going to the ultrasoft region of the momentum scale.Comment: 41, LaTeX, minor changes, identical to published versio

    Testing the predicted mass-loss bi-stability jump at radio wavelengths

    Get PDF
    In this study, we test the theoretically predicted mass-loss behaviour as a function of stellar effective temperature across the so-called `bi-stability' jump (BSJ). We gathered radio observations of 30 OB supergiants (O8-B3). We derived the radio mass-loss rates and wind efficiencies, and compared our results with Halpha mass-loss rates and predictions based on radiation-driven wind models. he wind efficiency shows the possible presence of a local maximum around an effective temperature of 21~000 K -- in qualitative agreement with predictions. We also find that the radio mass-loss rates show good agreement with empirical Halpha rates. However, the empirical mass-loss rates are larger than the predicted rates from radiation-driven wind theory for objects above the BSJ temperature, whilst they are smaller for the rest. A new wind momenta-luminosity relation for O8-B0 stars has been derived.Comment: 13 pages, 13 figures, A&

    Eta Carinae and the Luminous Blue Variables

    Full text link
    We evaluate the place of Eta Carinae amongst the class of luminous blue variables (LBVs) and show that the LBV phenomenon is not restricted to extremely luminous objects like Eta Car, but extends luminosities as low as log(L/Lsun) = 5.4 - corresponding to initial masses ~25 Msun, and final masses as low as ~10-15 Msun. We present a census of S Doradus variability, and discuss basic LBV properties, their mass-loss behaviour, and whether at maximum light they form pseudo-photospheres. We argue that those objects that exhibit giant Eta Car-type eruptions are most likely related to the more common type of S Doradus variability. Alternative atmospheric models as well as sub-photospheric models for the instability are presented, but the true nature of the LBV phenomenon remains as yet elusive. We end with a discussion on the evolutionary status of LBVs - highlighting recent indications that some LBVs may be in a direct pre-supernova state, in contradiction to the standard paradigm for massive star evolution.Comment: 27 pages, 6 figures, Review Chapter in "Eta Carinae and the supernova imposters" (eds R. Humphreys and K. Davidson) new version submitted to Springe

    An individual patient-data comparison of combined modality therapy and ABVD alone for patients with limited-stage Hodgkin lymphoma

    Get PDF
    Background Treatment options for patients with nonbulky stage IA-IIA Hodgkin lymphoma include combined modality therapy (CMT) using doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD) plus involved-field radiation therapy (IFRT), and chemotherapy with ABVD alone. There are no mature randomized data comparing ABVD with CMT using modern radiation techniques. Patients and methods Using German Hodgkin Study Group HD10/HD11 and NCIC Clinical Trials Group HD.6 databases, we identified 588 patients who met mutually inclusive eligibility criteria from the preferred arms of HD10 or 11 (n = 406) and HD.6 (n = 182). We evaluated time to progression (TTP), progression-free (PFS) and overall survival, including in three predefined exploratory subset analyses. Results With median follow-up of 91 (HD10/11) and 134 (HD.6) months, respective 8-year outcomes were for TTP, 93% versus 87% [hazard ratio (HR) 0.44, 95% confidence interval (CI) 0.24-0.78]; for PFS, 89% versus 86% (HR 0.71, 95% CI 0.42-1.18) and for overall survival, 95% versus 95% (HR 1.09, 95% CI 0.49-2.40). In the exploratory subset analysis including HD10 eligible patients who achieved complete response (CR) or unconfirmed complete response (CRu) after two cycles of ABVD, 8-year PFS was 87% (HD10) versus 95% (HD.6) (HR 2.8; 95% CI 0.64-12.5) and overall survival 96% versus 100%. In contrast, among those without CR/CRu after two cycles of ABVD, 8-year PFS was 88% versus 74% (HR 0.35; 95% CI 0.16-0.79) and overall survival 95% versus 91%, respectively (HR 0.42; 95% CI 0.12-1.44). Conclusions In patients with nonbulky stage IA-IIA Hodgkin lymphoma, CMT provides better disease control than ABVD alone, especially among those not achieving complete response after two cycles of ABVD. Within the follow-up duration evaluated, overall survivals were similar. Longer follow-up is required to understand the implications of radiation and chemotherapy-related late effects. Clinical trials The trials included in this analysis were registered at ClinicalTrials.gov: HD10 - NCT00265018, HD11 - NCT00264953, HD.6 - NCT0000256

    Picosecond Fluorescence Relaxation Spectroscopy of the Calcium-Discharged Photoproteins Aequorin and Obelin

    Get PDF
    Addition of calcium ions to the Ca2+-regulated photoproteins, such as aequorin and obelin, produces a blue bioluminescence originating from a fluorescence transition of the protein-bound product, coelenteramide. The kinetics of several transient fluorescent species of the bound coelenteramide is resolved after picosecond-laser excitation and streak camera detection. The initially formed spectral distributions at picosecond-times are broad, evidently comprised of two contributions, one at higher energy (25000 cm-1) assigned as from the Ca2+-discharged photoprotein-bound coelenteramide in its neutral state. This component decays much more rapidly (t1/2 2 ps) in the case of the Ca2+-discharged obelin than aequorin (t1/2 30 ps). The second component at lower energy shows several intermediates in the 150-500 ps times, with a final species having spectral maxima 19400 cm-1, bound to Ca2+-discharged obelin, and 21300 cm-1, bound to Ca2+-discharged aequorin, and both have a fluorescence decay lifetime of 4 ns. It is proposed that the rapid kinetics of these fluorescence transients on the picosecond time scale, correspond to times for relaxation of the protein structural environment of the binding cavit

    On the nature of the galactic early-B hypergiants

    Get PDF
    Despite their importance to a number of astrophysical fields, the lifecycles of very massive stars are still poorly defined. In order to address this shortcoming, we present a detailed quantitative study of the physical properties of four early-B hypergiants (BHGs); Cyg OB2 #12, zeta Sco, HD190603 and BP Cru. These are combined with an analysis of their long-term spectroscopic and photometric behaviour in order to determine their evolutionary status. The long-term datasets revealed that they are remarkably stable over long periods (>40yr), with the possible exception of zeta Sco prior to the 20th century, in contrast to the typical excursions that characterise luminous blue variables (LBVs). Zeta Sco, HD190603 and BP Cru possess physical properties intermediate between B supergiants and LBVs; we therefore suggest that BHGs are the immediate descendants and progenitors (respectively) of such stars (for initial masses in the range ~30-60Msun). In contrast, while the wind properties of Cyg OB2 #12 are consistent with this hypothesis, the combination of extreme luminosity and spectroscopic mass (~110Msun) and comparatively low temperature means it cannot be accommodated in such a scheme. Likewise, despite its co-location with several LBVs above the Humphreys-Davidson (HD) limit, the lack of long term variability and its unevolved chemistry apparently excludes such an identification. Since such massive stars are not expected to evolve to such cool temperatures, the properties of Cyg OB2 #12 are difficult to understand under current evolutionary paradigms. [ABRIDGED]Comment: 36 pages, 19 figures (of which 17 pages are online supplemental material). Accepted for publication in Astronomy and Astrophysic
    corecore