350 research outputs found

    Genomics of a metamorphic timing QTL: \u3ci\u3emet1\u3c/i\u3e maps to a unique genomic position and regulates morph and species-specific patterns of brain transcription

    Get PDF
    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect QTL (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele specific chromosome rearrangement on linkage group 2 that uniquely brought functionally-associated genes into linkage. Further, we found that \u3e 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation

    Genomics of a Metamorphic Timing QT:: Met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    Get PDF
    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum).We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Further more, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation

    Genomics of a Metamorphic Timing QTL: Met1 Maps to a Unique Genomic Position and Regulates Morph and Species-Specific Patterns of Brain Transcription

    Get PDF
    Very little is known about genetic factors that regulate life history transitions during ontogeny. Closely related tiger salamanders (Ambystoma species complex) show extreme variation in metamorphic timing, with some species foregoing metamorphosis altogether, an adaptive trait called paedomorphosis. Previous studies identified a major effect quantitative trait locus (met1) for metamorphic timing and expression of paedomorphosis in hybrid crosses between the biphasic Eastern tiger salamander (Ambystoma tigrinum tigrinum) and the paedomorphic Mexican axolotl (Ambystoma mexicanum). We used existing hybrid mapping panels and a newly created hybrid cross to map the met1 genomic region and determine the effect of met1 on larval growth, metamorphic timing, and gene expression in the brain. We show that met1 maps to the position of a urodele-specific chromosome rearrangement on linkage group 2 that uniquely brought functionally associated genes into linkage. Furthermore, we found that more than 200 genes were differentially expressed during larval development as a function of met1 genotype. This list of differentially expressed genes is enriched for proteins that function in the mitochondria, providing evidence of a link between met1, thyroid hormone signaling, and mitochondrial energetics associated with metamorphosis. Finally, we found that met1 significantly affected metamorphic timing in hybrids, but not early larval growth rate. Collectively, our results show that met1 regulates species and morph-specific patterns of brain transcription and life history variation

    Partial reconstitution of cutaneous microvessels in long-term survivors after allogeneic bone marrow transplantation

    Get PDF
    BACKGROUND: Graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation (HSCT) and skin is involved in acute and chronic disease. Immune-mediated vessel attack and subsequent microvessel loss have been observed in skin of patients with chronic GVHD. OBJECTIVES: To test whether long-term survivors (LTS) after allogeneic HSCT without cutaneous GVHD show signs of persistent vascular remodeling. METHODS: Microvessels in skin biopsies were investigated in a cohort of 32 LTS with a median follow-up of 17 years (range 11-26). Five were currently classified as having chronic GVHD other than skin involvement. RESULTS: LTS showed no significant difference in median microvessel density and relative vessel size distribution pattern compared to healthy controls. Past experience of GVHD and current status of chronic GVHD other than skin involvement had no impact on vessel density. In contrast, recipients with chronic cutaneous GVHD of sclerotic type and patients with lichen sclerosus have significant microvessel loss in the upper dermis. CONCLUSION: The complex therapy of allogeneic HSCT had no sustained effect on the microvascular architecture of LTS when clinicopathological evidence of cutaneous GVHD is absent. Microvascular remodeling as observed during chronic GVHD recovers completely after resolution of chronic cutaneous GVHD

    Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.

    Get PDF
    types: JOURNAL ARTICLEA shift toward higher atmospheric oxygen concentration during the late Proterozoic has been inferred from multiple indirect proxies and is seen by many as a prerequisite for the emergence of complex animal life. However, the mechanisms controlling the level of oxygen throughout the Proterozoic and its eventual rise remain uncertain. Here we use a simple biogeochemical model to show that the balance between long-term carbon removal fluxes via terrestrial silicate weathering and ocean crust alteration plays a key role in determining atmospheric oxygen concentration. This balance may be shifted by changes in terrestrial weatherability or in the generation rate of oceanic crust. As a result, the terrestrial chemical weathering flux may be permanently altered-contrasting with the conventional view that the global silicate weathering flux must adjust to equal the volcanic CO2 degassing flux. Changes in chemical weathering flux in turn alter the long-term supply of phosphorus to the ocean, and therefore the flux of organic carbon burial, which is the long-term source of atmospheric oxygen. Hence we propose that increasing solar luminosity and a decrease in seafloor spreading rate over 1,500-500 Ma drove a gradual shift from seafloor weathering to terrestrial weathering, and a corresponding steady rise in atmospheric oxygen. Furthermore, increased terrestrial weatherability during the late Neoproterozoic may explain low temperature, increases in ocean phosphate, ocean sulfate, and atmospheric oxygen concentration at this time.NER

    Chemical Weathering of Loess and Its Contribution to Global Alkalinity Fluxes to the Coastal Zone During the Last Glacial Maximum, Mid‐Holocene, and Present

    Get PDF
    Loess sediments are windblown silt deposits with, in general, a carbonate grain content of up to 30%. While regionally, loess was reported to increase weathering fluxes substantially, the influence on global weathering fluxes remains unknown. Especially on glacial‐interglacial time scales, loess weathering fluxes might have contributed to land‐ocean alkalinity flux variability since the loess areal extent during glacial epochs was larger. To quantify loess weathering fluxes, global maps representing the loess distribution were compiled. Water chemistry of rivers draining recent loess deposits suggests that loess contributes over‐proportionally to alkalinity concentrations if compared to the mean of alkalinity concentrations of global rivers (~4,110 ”eq L−1 for rivers draining loess deposits and ~1,850 ”eq L−1 for the total of global rivers), showing comparable alkalinity concentration patterns in rivers as found for carbonate sedimentary rocks. Loess deposits, covering ~4% of the ice‐ and water‐free land area, increase calculated global alkalinity fluxes to the coastal zone by 16%. The new calculations lead to estimating a 4% higher global alkalinity flux during the Last Glacial Maximum (LGM) compared to present fluxes. The effect of loess on that comparison is high. Alkalinity fluxes from silicate‐dominated lithological classes were ~28% and ~30% lower during the LGM than recent (with loess and without loess, respectively), and elevated alkalinity fluxes from loess deposits compensated for this. Enhanced loess weathering dampens due to a legacy effect changes in silicate‐dominated lithologies over the glacial‐interglacial time scale

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    The Geological Record of Ocean Acidification

    Get PDF
    Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO2, global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry—a consequence of the unprecedented rapidity of CO2 release currently taking place
    • 

    corecore