2,324 research outputs found

    Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    Get PDF
    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch. However, at the highest redshifts (z>7.5z>7.5; lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z>7.5z>7.5. We detected the Lyman-α\alpha emission line at 10504\sim 10504 {\AA} in two separate observations with MOSFIRE on the Keck I Telescope and independently with the Hubble Space Telescope's slit-less grism spectrograph, implying a source redshift of z=7.640±0.001z = 7.640 \pm 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z=0.545z = 0.545), with an estimated intrinsic luminosity of MAB=19.6±0.2M_{AB} = -19.6 \pm 0.2 mag and a stellar mass of M=3.00.8+1.5×108M_{\star} = 3.0^{+1.5}_{-0.8} \times 10^8 solar masses. Both are an order of magnitude lower than the four other Lyman-α\alpha emitters currently known at z>7.5z > 7.5, making it probably the most distant representative source of reionization found to date

    The Grism Lens-Amplified Survey from Space (GLASS). V. Extent and spatial distribution of star formation in z~0.5 cluster galaxies

    Get PDF
    We present the first study of the spatial distribution of star formation in z~0.5 cluster galaxies. The analysis is based on data taken with the Wide Field Camera 3 as part of the Grism Lens-Amplified Survey from Space (GLASS). We illustrate the methodology by focusing on two clusters (MACS0717.5+3745 and MACS1423.8+2404) with different morphologies (one relaxed and one merging) and use foreground and background galaxies as field control sample. The cluster+field sample consists of 42 galaxies with stellar masses in the range 10^8-10^11 M_sun, and star formation rates in the range 1-20 M_sun/yr. Both in clusters and in the field, H{\alpha} is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. In ~20% of the cases, the H{\alpha} emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the H{\alpha} emission and that of the continuum are offset by less than 1 kpc. We investigate trends with the hot gas density as traced by the X-ray emission, and with the surface mass density as inferred from gravitational lens models and find no conclusive results. The diversity of morphologies and sizes observed in H_alpha illustrates the complexity of the environmental process that regulate star formation. Upcoming analysis of the full GLASS dataset will increase our sample size by almost an order of magnitude, verifying and strengthening the inference from this initial dataset.Comment: 18 pages, 15 figures, accepted for publication in Ap

    Rhamnose is superior to mannitol as a monosaccharide in the dual sugar absorption test: A prospective randomized study in children with treatment-naïve celiac disease

    Get PDF
    BACKGROUND AND AIM: We sought to correlate two different measures of gut permeability [lactulose:mannitol (L:M) and lactulose:rhamnose (L:R)] to the severity of duodenal histopathology in children with and without elevated antibodies to tissue transglutaminase (tTG). A secondary objective was to correlate gut permeability with celiac disease (CD) serology and indices of inflammation and bacterial product translocation. METHODS: We prospectively randomized children undergoing endoscopy with abnormal ( RESULTS: Of the 54 cases with positive celiac serology, 31 and 69% had modified Marsh 0/1 scores or ≥3a, respectively. Circulating tTG IgA correlated with the modified Marsh score ( CONCLUSIONS: L:R, but not L:M, is associated with modified Marsh scores in children undergoing small bowel biopsy for suspected CD. Despite increased intestinal permeability, we see scant evidence of systemic exposure to gut microbes in these children. Gut permeability testing with L:R may predict which patients with abnormal celiac serology will have biopsy evidence for celiac disease and reduce the proportion of such patients undergoing endoscopy whose Marsh scores are ≤1. M should not be used as a monosaccharide for permeability testing in children

    Genetic variations in the Hippo signaling pathway and breast cancer risk in African American women in the AMBER Consortium

    Get PDF
    The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Dysfunction of the Hippo pathway components has been linked with breast cancer stem cell regulation, as well as breast tumor progression and metastasis. TAZ, a key component of the Hippo pathway, is highly expressed in triple negative breast cancer; however, the associations of genetic variations in this important pathway with breast cancer risk remain largely unexplored. Here, we analyzed 8309 germline variants in 15 genes from the Hippo pathway with a total of 3663 cases and 4687 controls from the African American Breast Cancer Epidemiology and Risk Consortium. Odds ratios (ORs) were estimated using logistic regression for overall breast cancer, by estrogen receptor (ER) status (1983 ER positive and 1098 ER negative), and for case-only analyses by ER status. The Hippo signaling pathway was significantly associated with ER-negative breast cancer (pathway level P = 0.02). Gene-based analyses revealed that CDH1 was responsible for the pathway association (P < 0.01), with rs4783673 in CDH1 statistically significant after gene-level adjustment for multiple comparisons (P = 9.2×10−5, corrected P = 0.02). rs142697907 in PTPN14 was associated with ER-positive breast cancer and rs2456773 in CDK1 with ER-negativity in case-only analysis after gene-level correction for multiple comparisons (corrected P < 0.05). In conclusion, common genetic variations in the Hippo signaling pathway may contribute to both ER-negative and ER+ breast cancer risk in AA women

    Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function”

    Get PDF
    Metabolomics is the methodology that identifies and measures global pools of small molecules (of less than about 1,000 Da) of a biological sample, which are collectively called the metabolome. Metabolomics can therefore reveal the metabolic outcome of a genetic or environmental perturbation of a metabolic regulatory network, and thus provide insights into the structure and regulation of that network. Because of the chemical complexity of the metabolome and limitations associated with individual analytical platforms for determining the metabolome, it is currently difficult to capture the complete metabolome of an organism or tissue, which is in contrast to genomics and transcriptomics. This paper describes the analysis of Arabidopsis metabolomics data sets acquired by a consortium that includes five analytical laboratories, bioinformaticists, and biostatisticians, which aims to develop and validate metabolomics as a hypothesis-generating functional genomics tool. The consortium is determining the metabolomes of Arabidopsis T-DNA mutant stocks, grown in standardized controlled environment optimized to minimize environmental impacts on the metabolomes. Metabolomics data were generated with seven analytical platforms, and the combined data is being provided to the research community to formulate initial hypotheses about genes of unknown function (GUFs). A public database (www.PlantMetabolomics.org) has been developed to provide the scientific community with access to the data along with tools to allow for its interactive analysis. Exemplary datasets are discussed to validate the approach, which illustrate how initial hypotheses can be generated from the consortium-produced metabolomics data, integrated with prior knowledge to provide a testable hypothesis concerning the functionality of GUFs

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    The genomes of two key bumblebee species with primitive eusocial organization

    Get PDF
    Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation

    Accumulation of Endogenous LITAF in Aggresomes

    Get PDF
    LITAF is a 161 amino acid cellular protein which includes a proline rich N-terminus and a conserved C-terminal domain known as the simple-like domain. Mutations in LITAF have been identified in Charcot-Marie tooth disease, a disease characterized by protein aggregates. Cells transfected with cellular LITAF reveal that LITAF is localized to late endosomes/lysosomes. Here we investigated the intracellular localization of endogenous LITAF. We demonstrated that endogenous LITAF accumulates at a discrete cytoplasmic site in BGMK cells that we identify as the aggresome. To determine the domain within LITAF that is responsible for the localization of LITAF to aggresomes, we created a construct that contained the C-terminal simple-like domain of LITAF and found that this construct also localizes to aggresomes. These data suggest the simple-like domain is responsible for targeting endogenous LITAF to the aggresome

    Integrating natural gradients, experiments, and statistical modeling in a distributed network experiment: An example from the WaRM Network

    Get PDF
    A growing body of work examines the direct and indirect effects of climate change on ecosystems, typically by using manipulative experiments at a single site or performing meta-analyses across many independent experiments. However, results from single-site studies tend to have limited generality. Although meta-analytic approaches can help overcome this by exploring trends across sites, the inherent limitations in combining disparate datasets from independent approaches remain a major challenge. In this paper, we present a globally distributed experimental network that can be used to disentangle the direct and indirect effects of climate change. We discuss how natural gradients, experimental approaches, and statistical techniques can be combined to best inform predictions about responses to climate change, and we present a globally distributed experiment that utilizes natural environmental gradients to better understand long-term community and ecosystem responses to environmental change. The warming and (species) removal in mountains (WaRM) network employs experimental warming and plant species removals at high- and low-elevation sites in a factorial design to examine the combined and relative effects of climatic warming and the loss of dominant species on community structure and ecosystem function, both above- and belowground. The experimental design of the network allows for increasingly common statistical approaches to further elucidate the direct and indirect effects of warming. We argue that combining ecological observations and experiments along gradients is a powerful approach to make stronger predictions of how ecosystems will function in a warming world as species are lost, or gained, in local communities
    corecore