94 research outputs found

    SAUR63 stimulates cell growth at the plasma membrane

    Get PDF
    In plants, regulated cell expansion determines organ size and shape. Several members of the family of redundantly acting Small Auxin Up RNA (SAUR) proteins can stimulate plasma membrane (PM) H+-ATPase proton pumping activity by inhibiting PM-associated PP2C.D phosphatases, thereby increasing the PM electrochemical potential, acidifying the apoplast, and stimulating cell expansion. Similarly, Arabidopsis thaliana SAUR63 was able to increase growth of various organs, antagonize PP2C.D5 phosphatase, and increase H+-ATPase activity. Using a gain-of-function approach to bypass genetic redundancy, we dissected structural requirements for SAUR63 growth-promoting activity. The divergent N-terminal domain of SAUR63 has a predicted basic amphipathic α-helix and was able to drive partial PM association. Deletion of the N-terminal domain decreased PM association of a SAUR63 fusion protein, as well as decreasing protein level and eliminating growth-promoting activity. Conversely, forced PM association restored ability to promote H+-ATPase activity and cell expansion, indicating that SAUR63 is active when PM-associated. Lipid binding assays and perturbations of PM lipid composition indicate that the N-terminal domain can interact with PM anionic lipids. Mutations in the conserved SAUR domain also reduced PM association in root cells. Thus, both the N-terminal domain and the SAUR domain may cooperatively mediate the SAUR63 PM association required to promote growth

    Light Plays an Essential Role in Intracellular Distribution of Auxin Efflux Carrier PIN2 in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Light plays a key role in multiple plant developmental processes. It has been shown that root development is modulated by shoot-localized light signaling and requires shoot-derived transport of the plant hormone, auxin. However, the mechanism by which light regulates root development is not largely understood. In plants, the endogenous auxin, indole-3-acetic acid, is directionally transported by plasma-membrane (PM)-localized auxin influx and efflux carriers in transporting cells. Remarkably, the auxin efflux carrier PIN proteins exhibit asymmetric PM localization, determining the polarity of auxin transport. Similar to PM-resident receptors and transporters in animal and yeast cells, PIN proteins undergo constitutive cycling between the PM and endosomal compartments. Auxin plays multiple roles in PIN protein intracellular trafficking, inhibiting PIN2 endocytosis at some concentrations and promoting PIN2 degradation at others. However, how PIN proteins are turned over in plant cells is yet to be addressed. METHODOLOGY AND PRINCIPLE FINDINGS: Using laser confocal scanning microscopy, and physiological and molecular genetic approaches, here, we show that in dark-grown seedlings, the PM localization of auxin efflux carrier PIN2 was largely reduced, and, in addition, PIN2 signal was detected in vacuolar compartments. This is in contrast to light-grown seedlings where PIN2 was predominantly PM-localized. In light-grown plants after shift to dark or to continuous red or far-red light, PIN2 also accumulated in vacuolar compartments. We show that PIN2 vacuolar targeting was derived from the PM via endocytic trafficking and inhibited by HY5-dependent light signaling. In addition, the ubiquitin 26S proteasome is involved in the process, since its inhibition by mutations in COP9 and a proteasome inhibitor MG132 impaired the process. CONCLUSIONS AND SIGNIFICANCE: Collectively, our data indicate that light plays an essential role in PIN2 intracellular trafficking, promoting PM-localization in the presence of light and, on the other hand, vacuolar targeting for protein degradation in the absence of light. Based on these results, we postulate that light regulation of root development is mediated at least in part by changes in the intracellular distribution of auxin efflux carriers, PIN proteins, in response to the light environment

    The Arabidopsis protein phosphatase PP2C38 negatively regulates the central immune kinase BIK1

    Get PDF
    Plants recognize pathogen-associated molecular patterns (PAMPs) via cell surface-localized pattern recognition receptors (PRRs), leading to PRR-triggered immunity (PTI). The Arabidopsis cytoplasmic kinase BIK1 is a downstream substrate of several PRR complexes. How plant PTI is negatively regulated is not fully understood. Here, we identify the protein phosphatase PP2C38 as a negative regulator of BIK1 activity and BIK1-mediated immunity. PP2C38 dynamically associates with BIK1, as well as with the PRRs FLS2 and EFR, but not with the co-receptor BAK1. PP2C38 regulates PAMP-induced BIK1 phosphorylation and impairs the phosphorylation of the NADPH oxidase RBOHD by BIK1, leading to reduced oxidative burst and stomatal immunity. Upon PAMP perception, PP2C38 is phosphorylated on serine 77 and dissociates from the FLS2/EFR-BIK1 complexes, enabling full BIK1 activation. Together with our recent work on the control of BIK1 turnover, this study reveals another important regulatory mechanism of this central immune component

    Resolving the homology-function relationship through comparative genomics of membrane-trafficking machinery and parasite cell biology

    Get PDF
    With advances in DNA sequencing technology, it is increasingly common and tractable to informatically look for genes of interest in the genomic databases of parasitic organisms and infer cellular states. Assignment of a putative gene function based on homology to functionally characterized genes in other organisms, though powerful, relies on the implicit assumption of functional homology, i.e. that orthology indicates conserved function. Eukaryotes reveal a dazzling array of cellular features and structural organization, suggesting a concomitant diversity in their underlying molecular machinery. Significantly, examples of novel functions for pre-existing or new paralogues are not uncommon. Do these examples undermine the basic assumption of functional homology, especially in parasitic protists, which are often highly derived? Here we examine the extent to which functional homology exists between organisms spanning the eukaryotic lineage. By comparing membrane trafficking proteins between parasitic protists and traditional model organisms, where direct functional evidence is available, we find that function is indeed largely conserved between orthologues, albeit with significant adaptation arising from the unique biological features within each lineage

    Functional annotation of the transcriptome of Sorghum bicolor in response to osmotic stress and abscisic acid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Higher plants exhibit remarkable phenotypic plasticity allowing them to adapt to an extensive range of environmental conditions. Sorghum is a cereal crop that exhibits exceptional tolerance to adverse conditions, in particular, water-limiting environments. This study utilized next generation sequencing (NGS) technology to examine the transcriptome of sorghum plants challenged with osmotic stress and exogenous abscisic acid (ABA) in order to elucidate genes and gene networks that contribute to sorghum's tolerance to water-limiting environments with a long-term aim of developing strategies to improve plant productivity under drought.</p> <p>Results</p> <p>RNA-Seq results revealed transcriptional activity of 28,335 unique genes from sorghum root and shoot tissues subjected to polyethylene glycol (PEG)-induced osmotic stress or exogenous ABA. Differential gene expression analyses in response to osmotic stress and ABA revealed a strong interplay among various metabolic pathways including abscisic acid and 13-lipoxygenase, salicylic acid, jasmonic acid, and plant defense pathways. Transcription factor analysis indicated that groups of genes may be co-regulated by similar regulatory sequences to which the expressed transcription factors bind. We successfully exploited the data presented here in conjunction with published transcriptome analyses for rice, maize, and Arabidopsis to discover more than 50 differentially expressed, drought-responsive gene orthologs for which no function had been previously ascribed.</p> <p>Conclusions</p> <p>The present study provides an initial assemblage of sorghum genes and gene networks regulated by osmotic stress and hormonal treatment. We are providing an RNA-Seq data set and an initial collection of transcription factors, which offer a preliminary look into the cascade of global gene expression patterns that arise in a drought tolerant crop subjected to abiotic stress. These resources will allow scientists to query gene expression and functional annotation in response to drought.</p

    Genetic Evidence for an Indispensable Role of Somatic Embryogenesis Receptor Kinases in Brassinosteroid Signaling

    Get PDF
    The authors are grateful to the Arabidopsis Biological Resource Center for providing the T-DNA insertion lines discussed in this work. We thank Dr. Yanhai Yin (Iowa State University) for providing anti-BES1 antibody, Dr. Jiayang Li (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for bri1-301 seeds, and Dr. Xing-wang Deng (Yale University) for cop1-4 and cop1-6 seeds as controls.Author Summary Brassinosteroids (BRs) are a group of plant hormones critical for plant growth and development. BRs are perceived by a cell-surface receptor complex including two distinctive receptor kinases, BRI1 and BAK1. Whereas BRI1 is a true BR-binding receptor, BAK1 does not appear to have BR-binding activity. Therefore, BAK1 is likely a co-receptor in BR signal transduction. The genetic significance of BAK1 was not clearly demonstrated in previous studies largely due to functional redundancy of BAK1 and its closely related homologues. It was not clear whether BAK1 plays an essential role or only an enhancing role in BR signaling. In this study, we identified all possible BAK1 redundant genes in the Arabidopsis thaliana genome and generated single, double, triple, and quadruple mutants. Detailed analysis indicated that, without BAK1 and its functionally redundant proteins, BR signaling is completely disrupted, largely because BRI1 has lost its ability to activate downstream components. These studies provide the first piece of loss-of-functional genetic evidence that BAK1 is indispensable to the early events of the BR signaling pathway.Yeshttp://www.plosgenetics.org/static/editorial#pee

    Retromer Is Essential for Autophagy-Dependent Plant Infection by the Rice Blast Fungus

    Get PDF
    We thank Dr. Yizhen Deng at the Temasek Life sciences Laboratory (TLL) for providing the RFP-MoAtg8 plasmid. We would like to thank Drs. Zhenbiao Yang (University of California, Riverside) and Xianying Dou (Fujian Agriculture and Forestry University) for helpful discussions.Author Summary The rice blast fungus Magnaporthe oryzae utilizes key infection structures, called appressoria, elaborated at the tips of the conidial germ tubes to gain entry into the host tissue. Development of the appressorium is accompanied with autophagy in the conidium leading to programmed cell death. This work highlights the significance of the Vps35/retromer membrane-trafficking machinery in the regulation of autophagy during appressorium-mediated host penetration, and thus sheds light on a novel molecular mechanism underlying autophagy-based membrane trafficking events during pathogen-host interaction in rice blast disease. Our findings provide the first genetic evidence that the retromer controls the initiation of autophagy in filamentous fungi.Yeshttp://www.plosgenetics.org/static/editorial#pee

    The far side of auxin signaling: fundamental cellular activities and their contribution to a defined growth response in plants

    Get PDF

    Image Processing of Outer-Product matrices - a new way to classify samples: Examples using visible/NIR/MIR spectral data.

    Get PDF
    peer-reviewedNOTICE: this is the author’s version of a work that was accepted for publication in Chemometrics and Intelligent Laboratory Systems. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, volume 86(2), April 2007. DOI:10.1016/j.chemolab.2006.06.014A chemometric analysis has been developed to emphasise the discrimination power of spectroscopic techniques such as near infrared, mid-infrared and visible spectroscopy. The combination of two spectral domains using outer product analysis (OPA) leads to the calculation of an outer product (OP) matrix. The representation of this matrix is called the "analytical fingerprint" of the samples and their classification is performed in the following steps. First, two different techniques are tested by subtracting the images one-by-one and the sum of all the elements of the resulting difference matrix gives a scalar, characteristic of the distance between the two images. Combining chemical analysis with image processing techniques provides an original approach to study butters and margarines in relation to their fat content. Best results were obtained with the OP matrix built from NIR and visible signals following the use of city block distance and average linkage. Samples were arranged in four groups: 100 %, 82-75 %, 70-59 % and 38-25 % w/w fat. The cophenetic correlation coefficient (validity of the cluster information generated by the linkage function) associated with these spectral data has a value of 0.973. Similar results were obtained using Ward's algorithm which generated four groups and a cophenetic correlation coefficient equal to 0.959
    corecore