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Abstract Recent years have provided us with spectacular
insights into the biology of the plant hormone auxin, leaving
the impression of a highly versatile molecule involved in
virtually every aspect of plant development. A combination
of genetics, biochemistry, and cell biology has established
auxin signaling pathways, leading to the identification of
two distinct modes of auxin perception and downstream
regulatory cascades. Major targets of these signaling modules
are components of the polar auxin transport machinery,
mediating directional distribution of the phytohormone
throughout the plant body, and decisively affecting plant
development. Alterations in auxin transport, metabolism, or
signaling that occur as a result of intrinsic as well as
environmental stimuli, control adjustments in morphogenetic
programs, giving rise to defined growth responses attributed
to the activity of the phytohormone. Some of the results
obtained from the analysis of auxin, however, do not fit
coherently into a picture of highly specific signaling events,
but rather suggest mutual interactions between auxin and
fundamental cellular pathways, like the control of intracellular
protein sorting or translation. Crosstalk between auxin and
these basic determinants of cellular activity and how they
might shape auxin effects in the control of morphogenesis
are the subject of this review.
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Abbreviations

ABC Atp-binding cassette
ABCB ATP-BINDING CASSETTE SUBFAMILY

B-TYPE
ABP1 AUXIN BINDING PROTEIN 1
ADA2 TRANSCRIPTIONAL ADAPTOR 2
AFB AUXIN SIGNALING F-BOX
ARF ADP-ribosylation factor
ARF AUXIN RESPONSE FACTOR
ATI Auxin transport inhibitor
ATP Adenosine triphosphate
Aux/IAA AUXIN/INDOLE ACETIC ACID
AUX1 AUXIN 1
BFA Brefeldin A
CCP Clathrin-coated pits
CCV Clathrin-coated vesicles
CHC Clathrin heavy chain
CHD Chromodomain helicase DNA
CLASP CYTOPLASMIC LINKER-ASSOCIATED

PROTEIN
CLC Clathrin light chain
eIF3h Eukaryotic translation initiation factor 3 subunit H
ER Endoplasmic reticulum
ETT ETTIN
GCN5 GENERAL CONTROL NONDEPRESSIBLE 5
GEF Guanine-nucleotide exchange factor
IAA Indole-3-acetic acid
ICR1 INTERACTOR OF CONSTITUTIVE ROP 1
LAX LIKE AUXIN 1
MAP Microtubule-associated protein
MP MONOPTEROS
MT Microtubule
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MVB Multivesicular bodies
ORF Open reading frame
PARL1 PARALLEL 1
PAT Polar auxin transport
PILS PIN-LIKES
PIN PIN-FORMED
PKL PICKLE
PP6 PROTEIN PHOSPHATASE 6
PRZ1 PROPORZ 1
PVC Prevacuolar compartment
RIC ROP-INTERACTIVE CRIB MOTIF-

CONTAINING PROTEIN
ROP Rho-type
RPL Ribosomal protein of the large subunit
SCF SKP, CULLIN, F-BOX
SEC3 SECRETORY 3
SKP2B S-PHASE KINASE-ASSOCIATED PROTEIN 2B
SLR SOLITARY-ROOT
SNX1 SORTING NEXIN 1
SPK1 SPIKE 1
STV1 SHORT VALVE 1
TGN/EE Trans golgi network/early endosomes
TIR1 TRANSPORT INHIBITOR RESPONSE 1
TPL TOPLESS
TPR TPL-RELATED
uORF Upstream ORF

Introduction

Plant growth regulators, also referred to as phytohormones,
decisively influence plant development and environmental
interactions. Similar to hormones in metazoans, the activity
of these compounds is tightly controlled, with sophisticated
pathways modulat ing activi ty and specif ici ty of
phytohormones. Auxin, for example, (indole-3-acetic acid,
IAA, representing the predominant compound found in
plants), had been implicated in the regulation of plant
growth long before its chemical structure was identified
(Kögl and Haagen-Smits 1931). Even Charles Darwin
speculated about the participation of a mobile signal in
the directional growth of plant organs (Darwin and
Darwin 1881). Half a century later, Frits Went and Nikolai
Cholodny independently demonstrated that auxin functions
as a mediator of such tropic growth responses (Went 1926;
Cholodny 1927). However, it took another half a century
until the first molecular determinants mediating auxin
responses were identified.

As with other plant hormones or secondary messengers, the
auxin signals first need to be perceived by specific receptor
molecules, and the initial signal consequently needs to be
transmitted to ultimately promote hormonal responses. This

might be reflected in, for example, adjustments in the
transcription of target genes leading to defined cellular
responses. Auxin however, is quite unique among
phytohormones, as plants have evolved complex machineries
mediating intra- as well as intercellular polar auxin transport
(PAT). This enables the establishment of hormonal
concentration and—hence—activity gradients, thus shaping
plant growth and development by active hormone transport
mechanisms, which is unparalleled among plant growth
regulators (Leyser 2011; Peer et al. 2011; Wabnik et al.
2011; Lau et al. 2012; Barbez and Kleine-Vehn 2013; Ljung
2013; Spalding 2013). In the first sections of this review, we
provide an overview, summarizing general aspects of auxin
transport and signaling. Further on, we summarize recent
work, which has revealed novel insights into auxin-signaling
pathways, thereby connecting auxin responses to global
cellular activities and thus raising questions about the
specificity of auxin-mediated growth control. These novel
findings and scenarios, integrating fundamental activities in
the regulation of auxin signaling are the main subject of this
review.

Essentials of auxin perception and signaling

The search for proteins that might act as cellular receptors for
auxin was already initiated by biochemical approaches in the
1970s. It was straightforward genetics though, that led to
identification of TRANSPORT INHIBITOR RESPONSE 1
(TIR1) , the so far best-characterized auxin receptor in the
model plant Arabidopsis (Ruegger et al. 1998; Gray et al.
1999; Dharmasiri et al. 2005a, b; Kepinski and Leyser 2005).
TIR1 represents one of numerous F-box proteins that constitute
part of a heteromeric F-box E3 ubiquitin ligase complex, which
mediates the reversible covalent attachment of the small protein
ubiquitin onto target proteins (Jackson and Eldridge 2002;
Lechner et al. 2006). In the case of SCFTIR1/AFB-type E3
ligases, this reaction depends on auxin binding by TIR1 or by
closely related AUXIN SIGNALING F-BOX (AFB) proteins,
which in turn enhances an interaction with short-lived AUXIN/
INDOLE ACETIC ACID (Aux/IAA) proteins that function as
auxin co-receptors (Theologis et al. 1985; Dharmasiri et al.
2003; Tan et al. 2007; Calderon Villalobos et al. 2012)
(Fig. 1). Ubiquitylation of Aux/IAA proteins likely occurs as
a result of auxin binding, leading to the subsequent degradation
of Aux/IAA via the proteasomal pathway (Gray et al. 2001;
Yang et al. 2004; Maraschin et al. 2009). Control of Aux/IAA
degradation is crucial for plant responses to auxin, as it links
hormone perception to the other essential function of Aux/IAA
proteins in transcriptional regulation. Aux/IAA forms
heterodimers with AUXIN RESPONSE FACTOR (ARF)
transcriptional regulators via protein interaction domains
located in the C-terminal portion of ARFs and Aux/
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IAAs. Upon auxin-induced degradation of Aux/IAAs, ARF
activity is no longer be repressed by heteromerization thus
allowing transmission of auxin signals into downstream
transcriptional networks (Kim et al. 1997; Ulmasov et al.
1997a, b; Tiwari et al. 2001) (Fig. 1). This, remarkably simple,
mechanism of transcriptional de-repression appears to be
sufficient for the integration of a highly diverse range of
signaling events controlled by auxin. To some extent, this
might explain the considerable number of Aux/IAA genes
found in the genomes of higher plants (Liscum and Reed
2002), all of which in principle could interact with the

different SCFTIR1/AFB receptors (Calderon Villalobos et al.
2012). Variations in auxin-binding affinities, arising as a result
of such variable interactions, might impact on the proteolytic
turnover of Aux/IAAs, thereby specifying downstream ARF
activities in transcriptional control (Calderon Villalobos et al.
2012; Yu et al. 2013). Moreover, plant genomes are
characterized by extensive ARF gene families, whose
members exhibit highly diverse expression profiles and
activities. This allows for efficient fine-tuning and
coordination of auxin-controlled transcriptional responses
(Okushima et al. 2005; Overvoorde et al. 2005).

Further cellular activities, implicated in shaping auxin
effects on transcription, are related to the control of chromatin
architecture and histone modifications (Sablowski 2011;
Yoshida et al. 2013). Topless (TPL) and TPL-related (TPR)
proteins represent transcriptional co-repressors, down-
regulating gene expression via interaction with diverse
transcriptional regulators (Long et al. 2006; Smith and Long
2010; Wang et al. 2013b). Specifically, TPL/TPR appear to be
involved in the recruitment of histone deacetylase activity,
thus promoting establishment of a chromatin status, which is
less accessible for the transcriptional machinery (Long et al.
2006; Wang et al. 2013b). TPL was demonstrated to
physically interact with Aux/IAA proteins, suggesting that
apart from sequestering ARFs, Aux/IAA-mediated down-
regulation of auxin responses involves TPL-mediated
establishment of a repressive chromatin status (Szemenyei
et al. 2008) (Fig. 1). Clear-cut genetic evidence linking the
regulation of chromatin architecture to established auxin
signaling pathways came from screens for suppressors of
slr-1 , a dominant mutation in SOLITARY-ROOT (SLR) /
IAA14 . Slr-1 is entirely defective in auxin-regulated lateral
root formation, due to a point mutation stabilizing the Aux/
IAA protein (Fukaki et al. 2002). Loss of chromatin
remodeling activity mediated by PICKLE (PKL)/GYMNOS ,
a CHD subfamily II ATP-dependent chromatin remodeling
factor, suppresses slr-1 lateral root formation defects. Such
suppression of slr-1 phenotypes by pkl requires ARF
transcription factors that act in conjunction with SLR/IAA14 ,
a finding that placed PKL together with ARFs in
transcriptional regulation of lateral root development (Fukaki
et al. 2006). Nevertheless, whilst PKL-mediated chromatin
remodeling activity was found to determine histone H3 lysine
27 trimethylation levels at repressed loci (Zhang et al. 2012), it
is still not resolved, whether auxin itself could influence PKL
activities on chromatin. Additional studies support scenarios
in which auxin directly impacts on chromatin architecture and
histone modifications. Chromatin in the promoter region of
SKP2B , an Arabidopsis F-box protein essential for cell cycle
progression during early stages of lateral root formation,
undergoes reversible adjustments in the composition of
nucleosomes as well as histone acetylation in an auxin-
dependent manner (Manzano et al. 2012). This was suggested

Fig. 1 Essential elements of auxin signaling and transport in plant cells.
Auxin perception by nuclear SCFTIR1/AFB (blue , yellow ) triggers
ubiquitination and proteasome-mediated degradation of Aux/IAA co-
receptors (green). As a result transcriptional repression via TPL (grey)
activity and via Aux/IAA-mediated inhibition of ARF transcriptional
regulators (red) is relieved. Auxin binding by extracellular ABP1 (lilac)
impacts on endocytic protein sorting (see also Fig. 2a), whereas the role of
ER-resident ABP1 is still not known. Cellular uptake of auxin is mediated
by AUX1/LAX-type permeases (green) and by selected ABCB-type
transporters (pink ). Cellular auxin efflux requires PIN- (blue ) and
ABCB-type (pink ) transport proteins. Auxin sequestration between
cytoplasm and ER involves activity of PILS and PIN proteins (turquois)
lacking the central hydrophilic loop that is characteristic for plasma
membrane-resident PINs. Auxin transport proteins are subject to
intracellular sorting from the plasma membrane to sorting endosomes
(SE)/trans Golgi network (TGN). Recycling from SE/TGN to the plasma
membrane involves activity of BFA-sensitive ARF-GEF GNOM,
specifically for sorting at the basal cellular domain. PIN sorting and
transcytosis is controlled by its phosphorylation status. PID (light green)
kinase activity promotes sorting of phosphorylated PINs preferentially to
the apical plasma membrane domain, a response that is antagonized by
PP6 (purple) phosphatase activity triggering sorting to the basal domain.
Apart from protein recycling and transcytosis between plasma membrane
domains, PINs are also subject to endocytic sorting via late endosomes/
multivesicular bodies into the lytic vacuole for their irreversible
degradation. Sorting via this pathway is controlled by ubiquitination of
PINs (red circles)
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to modulate SKB2B expression in response to the growth
regulator, being essential for transmission of hormonal signals
on cell proliferation (Manzano et al. 2012). In another report,
PROPORZ1 (PRZ1 )/AtADA2b , an Arabidopsis ortholog of
ADA2 transcriptional adaptor protein (Sieberer et al. 2003;
Vlachonasios et al. 2003), was demonstrated to channel auxin
effects on histone acetylation in the promoter region of auxin-
controlled loci, which coincided with alterations in auxin-
responsive gene expression (Anzola et al. 2010). Similar to
ADA2 homologs in other organisms, PRZ1 most likely
represents a component of multi-subunit chromatin
remodeling complexes that are required for the recruitment
of histone acetyl transferase GCN5 to chromatin (Mao et al.
2006). Prz1 shortcomings in controlling variations in histone
acetylation thus could result from very general defects in
chromatin remodeling activities (Anzola et al. 2010).
Detailed insights into mechanisms of an epigenetic control
that could transmit auxin signals via reversible histone
modifications have however, not been provided so far.

Identification of another type of auxin receptor was
originally based on characterization of auxin-binding
activities in cellular fractions (Ray 1977; Cross and Briggs
1978; Jones and Venis 1989). Such experiments resulted in the
identification of AUXIN-BINDING PROTEIN 1 (ABP1),
which localizes predominantly to the ER (Hertel et al. 1972;
Löbler and Klämbt 1985a, b; Shimomura et al. 1986) (Fig. 1).
For several decades however, it was not clear, how ABP1
might participate in auxin-controlled processes, and only
recently a role for ABP1 in post-transcriptional regulation of
hormonal responses has been revealed (Robert et al. 2010; Xu
et al. 2010). This work indicates that ABP1 functions as a
positive regulator of clathrin-mediated endocytosis from the
plasma membrane. ABP1 activity appears to be blocked upon
auxin binding, resulting in inhibition of endocytosis (Robert
et al. 2010). Furthermore, ABP1 function has been linked to
polarity establishment in cells, which involves ABP1-
mediated activation of downstream Rho-GTPases (ROP) to
affect cytoskeleton organization (Xu et al. 2010). Thus unlike
TIR1/AFB pathways, ABP1-mediated transmission of auxin
signals primarily affects post-translational responses. To
complicate matters further, a recent report has demonstrated
additional ABP1 activities in the regulation of Aux/IAA
protein via pathways antagonizing SCFTIR1/AFB activities
(Tromas et al. 2013). This places ABP1 function in
transcriptional regulation of responses to auxin, apart from
its role in protein sorting. However, it remains a mystery as to
how ABP1 might fulfill these quite different tasks. In
particular, we still have no clear clue about mechanisms that
would connect a predominantly ER-localized protein to
activities at the plasma membrane (Löbler and Klämbt
1985b; Inohara et al. 1989). It appears that at least a minor
portion of ABP1 escapes from the ER, and gets released into
the extracellular apoplast, where upon auxin binding

downstream signaling events might be initiated (Jones and
Herman 1993) (Fig. 1). It is still unclear how ABP1 might
enter the secretory pathway, as the specific trans-acting
determinants involved have not yet been characterized. In
addition, signaling from the extracellular apoplast to the
cytosolic face of the plasma membrane would require docking
to and signal transmission across the plasma membrane (Shi
and Yang 2011). Determinants that could be involved in these
aspects of ABP1-dependent auxin signaling events are under
investigation, but still await functional characterization (Shi
and Yang 2011; Sauer et al. 2013).

Key determinants of polar auxin transport

Ever since Darwin’s work, an active relocation of endogenous
signals has been implicated in the regulation of plant growth
responses (Darwin and Darwin 1881; Boysen Jensen 1910).
Subsequent experiments repeatedly demonstrated directional,
polar transport of auxin along the main plant body axes, and a
model has been put forward, integrating early observations
and suggesting a remarkably simple mechanism for the
transport of the hormone (Went and Thimann 1937; Rubery
and Sheldrake 1974; Raven 1975). According to the
chemiosmotic model, PAT along transport routes would
involve cellular uptake of apoplastic, protonated IAAH either
via uptake carriers or via diffusion across the plasma
membrane. Once inside the cell, further export of
deprotonated cytosolic IAA− into the apoplast would require
activity of specific efflux carriers, and an asymmetric, polar
distribution of such carrier proteins could pre-determine the
direction of hormone transport within a given cell file (Rubery
and Sheldrake 1974; Raven 1975). By making use of the
model plant Arabidopsis , a number of auxin transport proteins
have been identified, which essentially belong to three classes:
(1) a family of intrinsic membrane proteins with resemblance
to tryptophan permeases implicated in cellular uptake of the
growth regulator; (2) a group of ATP-binding cassette
membrane proteins involved in cellular efflux and uptake of
auxin; and (3) a plant-specific class of membrane proteins
involved in auxin cellular efflux as well as in intracellular
compartmentalization of the growth regulator. Genetic and
cell biological analysis of selected members of these classes
of auxin transport proteins has provided substantial insights
into the biology of auxin and has essentially confirmed the
models for PAT proposed about 40 years ago (Luschnig 2002;
Kramer 2004; Paponov et al. 2005; Geisler andMurphy 2006;
Bandyopadhyay et al. 2007; Benjamins and Scheres 2008;
Zazimalova et al. 2010) (Fig. 1).

AUXIN1 (AUX1) and LIKE AUX1 (LAX1) function in
cellular uptake of the hormone, and analysis of mutants
deficient in these loci demonstrated their involvement in
auxin-regulated processes like organ tropism, control of lateral
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root formation as well as phyllotactic patterning of leaves
(Bennett et al. 1996; Marchant et al. 1999; Reinhardt et al.
2003; Swarup et al. 2005; Bainbridge et al. 2008). When
viewing the localization of AUX1 in root meristems, a polar
distribution was revealed in cells along major auxin transport
routes. This presumably optimizes cellular uptake of the
growth regulator and could be of particular importance for
the establishment of transient auxin maxima in the regulation
of growth responses (Swarup et al. 2005). Heterologous
expression of AUX1 in Xenopus oocytes and in
Schizosaccharomyces pombe indicated auxin uptake activity
in a saturable manner at physiological pH, thus providing
strong evidence for AUX1 function as an auxin uptake
facilitator (Yang et al. 2006; Yang and Murphy 2009).

Among the plant ABC- or multidrug-resistant-type carrier
proteins characterized to date, members of a subclade have
been found to be involved in cellular efflux and uptake of
auxin (Rea 2007). ABCB1 , 4 , 19 , and 21 (ATP-BINDING
CASSETTE SUBFAMILY B-TYPE) function in cellular auxin
efflux (Gaedeke et al. 2001; Noh et al. 2001; Geisler et al.
2005; Terasaka et al. 2005; Kamimoto et al. 2012), and
additional experimental evidence has demonstrated facultative
auxin uptake activities for ABCB4 and ABCB21 which
depended on cytosolic auxin concentrations (Terasaka et al.
2005; Kamimoto et al. 2012). Expression and subcellular
localization of ABCB proteins, together with phenotypes of
abcb loss-of-function mutants, and mutant combinations, led
to models suggesting rather general functions in long-distance
auxin transport and loading into such transport highways
(Bandyopadhyay et al. 2007). In addition, ABCB auxin
transport protein function has been linked to highly defined
growth responses, like root hair formation, adventitious root
formation, or phototropism (Cho et al. 2007; Christie et al.
2011; Sukumar et al. 2013). Modulation of some of these
growth responses involves interaction between distinct auxin
transport activities, specifying auxin distribution via mutual
regulation of auxin transport proteins (Bouchard et al. 2006;
Blakeslee et al. 2007; Mravec et al. 2008; Titapiwatanakun
et al. 2009).

Mutants in some members of the PIN-FORMED (PIN)
family, representing a plant-specific family of membrane
proteins (Zazimalova et al. 2010), produce phenotypes that
are suggestive of severe aberrations in auxin-controlled
growth responses. Pin1 mutant alleles, for example, exhibit
broad defects in embryogenesis as well as in development of
inflorescences and floral organs, whereas pin2 alleles have
initially been characterized as agravitropic root growth
mutants (Bell and Maher 1990; Okada et al. 1991; Chen
et al. 1998; Gälweiler et al. 1998; Luschnig et al. 1998;
Utsuno et al. 1998). Additional phenotypes affecting diverse
aspects of plant development have been identified in mutant
combinations deficient in multiple PINs, underlining
functional redundancies within this protein family (Blilou

et al. 2005; Vieten et al. 2005). Most importantly however,
PIN localization studies revealed asymmetric, polar signals
restricted to domains at the plasma membrane, a distribution
that conforms to the chemiosmotic model for PAT. PIN1 for
example accumulates at the basal end of vascular stele cells
where it participates in rootward auxin transport towards the
primary root meristem (Gälweiler et al. 1998). Similar results
have been obtained for further PIN proteins, which exhibit a
polar distribution at the plasma membrane, concurrent with
the direction of auxin transport routes in different tissues and
cell files (Müller et al. 1998; Friml et al. 2002, 2003; Benkova
et al. 2003; Reinhardt et al. 2003; Sorefan et al. 2009). These
observations linked PIN function to cellular auxin efflux, and
results from auxin transport assays, performed either in plants
or heterologous hosts, further supported this notion (Petrasek
et al. 2006; Yang and Murphy 2009).

Owing to their central role in plant development, myriads
of reports connecting PINs to a large variety of biological
processes have been published since their initial discovery
about 15 years ago. In that respect it is surprising that we still
lack clear mechanistic insights into catalytic activities of PINs,
as no transport assay in an entirely defined experimental
system has been established. This is also true for PIN
topology: no structural model as based on protein
crystallization data has so far been provided for the PINs.
Thus, for the time being, we need to deal with the fact that
we still do not fully understand the function of PINs in auxin
efflux in mechanistic terms (Peer et al. 2011). This might
explain the rather vague term “auxin transport facilitator” that
is frequently used in the literature when referring to PINs.

Apart from conventional PIN proteins characterized by two
transmembrane domain regions and separated by a large
hydrophilic loop, additional PIN proteins share the
transmembrane domains but encode only a small central loop
region (Krecek et al. 2009). These proteins appear
evolutionary older than conventional PINs and were found
to localize to ER membranes, where they have been
implicated in the control of intracellular auxin homeostasis
(Mravec et al. 2009; Dal Bosco et al. 2012; Ding et al. 2012b;
Bender et al. 2013; Cazzonelli et al. 2013; Sawchuk et al.
2013). The purpose of auxin translocation across ER
membranes is not fully understood, but it is evident that auxin
redistribution between different intracellular compartments
could influence a wide range of auxin-controlled signaling
events (Barbez and Kleine-Vehn 2013) (Fig. 1). A biological
significance of this activity is underlined further by
characterization of another class of auxin transport proteins,
exhibiting limited similarity to PINs, and therefore termed
PILS (for PIN-LIKES ) genes (Barbez et al. 2012). PILS
proteins are found throughout the entire plant lineage and,
by analogy to ER-resident PINs, appear to modulate
intracellular auxin homeostasis (Barbez et al. 2012; Feraru
et al. 2012).
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While still not fully understood in terms of function,
characterization of these different groups of PIN and PILS
proteins changed our view on the evolution of auxin transport
and signaling (Zazimalova et al. 2010; Feraru et al. 2012). The
occurrence of ancestral ER-resident auxin transport proteins
suggests that a common ancestor of auxin transport proteins
first developed activities, mediating intracellular hormone
transport. In the course of acquisition of morphological
complexity, plants might have evolved modified PIN proteins
that get sorted to the plasma membrane, allowing for
directional, intercellular auxin transport. Perhaps, this was
one of the prerequisites for orchestrating sophisticated
developmental programs upon plants’ conquest of land.

Protein sorting and auxin

The key to the establishment of directional intercellular auxin
transport is a highly polar distribution of auxin transport
proteins at distinct plasma membrane domains. Four major
domains, comprising an apical and a basal domain together
with proximal (inner) and distal (outer) lateral domains as well
as additional sub-domains have so far been described in plant
cells (Dettmer and Friml 2011; Yang and Lavagi 2012). Auxin
transport proteins have been found at these domains and have
been described to undergo dynamic rearrangements in their
localization (Friml et al. 2002, 2003, 2004). The functional
significance of such a polar distribution, and variations
therein, was demonstrated by in planta expression of
constitutively mis-localized PIN proteins. This coincided with
alterations in auxin distribution and the occurrence of auxin-
related growth defects, highlighting additionally a role for
dynamic adjustments in PIN localization as a mediator of
directional auxin transport (Wisniewska et al. 2006;
Dhonukshe et al. 2010; Huang et al. 2010; Zhang et al. 2010).

Characterization of the machinery controlling the
distribution of auxin transport proteins has revealed pathways
that modulate sorting to and from distinct domains at the
plasma membrane (Geldner 2009; Titapiwatanakun and
Murphy 2009; Grunewald and Friml 2010; Richter et al.
2010; Robinson et al. 2012; Löfke et al. 2013). Plasma
membrane proteins are sorted along the secretory pathway
and reach their destination at the plasma membrane after
passage through Golgi compartments and the trans Golgi
network/early endosomes (TGN/EE) (Jürgens and Geldner
2007; Marti et al. 2010; Zarsky and Potocky 2010; Cai et al.
2011; Ding et al. 2012a). This is followed by re-internalization
via endocytic sorting into TGN/EE, and recycling back to the
plasma membrane, a response implicated in modulation of
plasma membrane protein function (Geldner et al. 2001)
(Fig. 2a). Alternatively, plasma membrane proteins are sorted
into multivesicular bodies/prevacuolar compartment for
degradation in the lytic vacuole (Richter et al. 2009;

Schellmann and Pimpl 2009; Reyes et al. 2011) (Fig. 2b).
Recycling of plasma membrane proteins has been linked to
ADP-ribosylation factor (ARF) GTPase activity that is
controlled by ARF guanine-nucleotide exchange factors
(ARF-GEF). Detailed analysis of PIN1 sorting revealed a
Brefeldin A-(BFA)-sensitive ARF-GEF GNOM as an
essential regulator for its recycling and transcytosis between
distinct plasma membrane domains (Steinmann et al. 1999;
Geldner et al. 2003; Kleine-Vehn et al. 2008a, 2010). In
addition, protein phosphorylation, mediated by PINOID
(PID) and related serine/threonine kinases, was found to affect
PIN targeting and plant growth (Friml et al. 2004; Santner and
Watson 2006; Michniewicz et al. 2007; Dhonukshe et al.
2010) (Fig. 2a). Specifically, phosphorylation of conserved
TPRXS(N/S) motifs and further sites within the PIN central
hydrophilic loop domain, appears to promote sorting to apical
plasma membrane domains (Dhonukshe et al. 2010; Huang
et al. 2010; Zhang et al. 2010), whereas PP6-type
heterotrimeric phosphatase antagonizes such activity, favoring
PIN sorting to basal cellular domains (Michniewicz et al.
2007; Dai et al. 2012; Ballesteros et al. 2013) (Fig. 2a). Next
to intracellular protein cycling, proteolytic degradation via
sorting to lytic vacuoles represents another means to adjust
auxin transport activities (Abas et al. 2006; Kleine-Vehn et al.
2008b; Laxmi et al. 2008; Marhavy et al. 2011). Plants, by
analogy to other eukaryotes, utilize reversible cargo
ubiquitination as a recognition signal for protein sorting from
the plasma membrane to the vacuole (Reyes et al. 2011;
Korbei and Luschnig 2013), which is consistent with
observations demonstrating that ubiquitination of
Arabidopsis PIN2 functions as a vacuolar targeting signal
(Leitner et al. 2012) (Fig. 2b).

Recent years have seen a systematic characterization of
evolutionary conserved pathways for protein sorting in plants.
It turns out that auxin decisively influences these stereotypic
sorting processes, which has now established the
phytohormone as a plant-specific regulator of universal
cellular activities. Paciorek and colleagues were the first to
demonstrate that treatment with potent auxin analogs, as well
as alterations in intracellular auxin homeostasis, interfere with
endocytic sorting of PIN proteins. This is hypothesized to
modulate auxin flow as part of a regulatory feedback switch
(Paciorek et al. 2005). Auxin effects on plasma membrane
protein sorting, however, are quite general and not restricted to
PIN proteins, acting via inhibition of clathrin-mediated
endocytosis (Paciorek et al. 2005; Robert et al. 2010). In
plants, experimental evidence for clathrin sorting has been
provided only recently, controlling variations in protein
abundance at the plasma membrane via endocyosis, with far-
reaching implications for a range of metabolic pathways and
signaling cascades (Dhonukshe et al. 2007). Clathrin
represents a triskelion-shaped complex, comprising a
structural backbone of three clathrin heavy chain (CHC)
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molecules, and three clathrin light chain (CLC) molecules,
which upon interaction form a polyhedral clathrin lattice
(Kirchhausen and Harrison 1981; Kirchhausen et al. 1986;
Royle 2006). For endocytic cargo sorting, clathrin needs to
associate with the plasma membrane, where it interacts with
cargo, adaptor protein complex-2 and further accessory
proteins, resulting in formation of clathrin-coated pits. In
animals, this is followed by maturation into cargo-loaded
clathrin-coated vesicles (CCV) upon internalization from the
plasma membrane and analogous processes appear to be
present in plants (Royle 2006; Kitakura et al. 2011; Ito et al.
2012; Di Rubbo et al. 2013; Fan et al. 2013; Kim et al. 2013;
Wang et al. 2013a; Yamaoka et al. 2013).

Auxin's effect on endocytic sorting has been linked to the
control of clathrin recruitment at the plasma membrane. In
fact, synthetic auxin analogs and IAAwere found to interfere
with recruitment of Arabidopsis CLC and CHC isoforms to
the plasmamembrane, thereby interfering with CCVassembly
and endocytic sorting (Robert et al. 2010; Wang et al. 2013a).
Inhibitory effects of auxin on CLC recruitment to the plasma
membrane appear to be mediated by auxin-binding by ABP1,
whereas SCFTIR1/AFB-controlled auxin perception seems
dispensable thus supporting models in which ABP1 acts as
positive regulator of clathrin-dependent endocytosis (Kitakura
et al. 2011; Wang et al. 2013a). Downstream components

linking ABP1 signaling to endocytic sorting comprise ROP-
type small GTPases, which were demonstrated to be activated
by auxin in an ABP1-dependent manner (Xu et al. 2010)
(Fig. 2a). ROPs represent the only small GTPase family found
in plants, with several of its members implicated in
intracellular cargo sorting via regulating actin and microtubule
components of the cytoskeleton (Molendijk et al. 2001; Gu
et al. 2003; Vernoud et al. 2003; Fu et al. 2009; Craddock et al.
2012) and a number of elegant studies have now established
their role in auxin responses via organization of the
cytoskeleton. Arabidopsis ROP2 was shown to affect PIN1
endocytosis in emerging lobe regions of interdigitated leaf
pavement cells (Nagawa et al. 2012). This involves the
activity of the ROP2 effector RIC4 (ROP-INTERACTIVE
CRIB MOTIF-CONTAINING PROTEIN), which stimulates
localized accumulation of F-actin and is suggested to
antagonize clathrin-dependent endocytosis of PIN1 (Nagawa
et al. 2012) (Fig. 2a). A related pathway has been proposed for
PIN2 sorting in root meristem cells, with the SPK1-(for
SPIKE1, an activator of ROP6)-ROP6-RIC1 regulatory
module promoting actin filament stabilization and supposedly
interfering with clathrin-dependent PIN2 endocytosis (Chen
et al. 2012; Lin et al. 2012). PIN retention at the plasma
membrane might cause elevated auxin flow into the apoplast,
which in turn could induce auxin signaling via apoplastic

Fig. 2 Auxin and its role in protein sorting. a Auxin binding by
extracellular ABP1 (lilac) causes activation of ROP GTPases (purple)
and downstream effectors RIC1 and RIC4 (green ). ROP2-RIC4
stimulates F-actin (yellow) accumulation at localized domains, which is
suggested to antagonize clathrin-mediated endocytosis of plasma
membrane proteins like PINs. This pathway is antagonized by ROP6-
RIC1 activity promoting local formation of cortical MT arrays (pink),
which interferes with activation of ROP2. ROP2 on the other hand
sequesters RIC1, thereby blocking formation of ordered MT arrays.
ICR1, another ROP-interacting protein (light blue ) is essential for
polarized distribution of PIN proteins at the plasma membrane. This

involves interaction with exocyst vesicle-tethering complex subunit
SEC3 (white). b Decisions about endocytic sorting and further targeting
on PIN proteins into the lytic vacuole depend on putative retromer subunit
SNX1 (light blue), which functions as a gating factor, promoting protein
recycling to the plasma membrane and thereby antagonizing vacuolar
sorting. CLASP-(yellow)-mediated tethering of SNX1 to MTs (pink),
links PIN sorting to cytoskeleton components and possibly ABP1-
mediated signaling. Variations in auxin homeostasis sensed by nuclear
SCFTIR1/AFB auxin receptor induce vacuolar sorting of PIN proteins.
Mechanisms and pathways involved are still elusive
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ABP1, altogether constituting a robust feed-forward loop
essential for auxin-driven growth responses (Yang and
Lavagi 2012).

Auxin-controlled ROP activity has been connected to
microtubules (MT) as well, seemingly antagonizing auxin
effects mediated via control of the actin cytoskeleton. ROP6
was found to bind and activate RIC1 a MT-associated protein
(MAP) in an ABP1-dependent manner (Fu et al. 2005, 2009;
Xu et al. 2010). This in turn would promote localized
accumulation of cortical MT arrays that are aligned
perpendicular to the axis of cell expansion and are implicated
in guidance of cellulose synthase activity (Crowell et al. 2009;
Bringmann et al. 2012) (Fig. 2a). Variations in ROP6 activity
could thus modulate cell expansion via differential cellulose
deposition at the cell wall. Activated ROP2, on the other hand,
locally sequesters RIC1 to interfere with ordered MT
alignment, whereas RIC1-mediated MT array organization
suppresses activation of ROP2 (Xu et al. 2010). Thus ROP2
and ROP6 pathways mutually inhibit each other in the
organization of the cytoskeleton, which presumably feeds back
on the sorting of PINs and corresponding auxin transport
activities in the control of morphogenesis (Yang and Lavagi
2012) (Fig. 2a). Another link between ROP activity and PIN
sorting was established by Hazak and colleagues, who
demonstrated an involvement of the ROP effector ICR1
(INTERACTOR OF CONSTITUTIVE ACTIVE ROP1) in
the control of polar PIN distribution at the plasma membrane
(Hazak et al. 2010). Notably, an earlier report demonstrated
interaction between ICR1 and SEC3, the latter representing a
subunit of an Arabidopsis vesicle-tethering exocyst protein
complex (Lavy et al. 2007; Zarsky et al. 2009; Zhang et al.
2013) (Fig. 2a). Such interaction would suggest a role for
ROP-ICR1 in secretory protein sorting, potentially modulating
exocyst activity and its effects on PIN distribution at the
plasma membrane (Drdova et al. 2013).

While it seems evident that the organization of the
cytoskeleton feeds back on auxin distribution via sorting of
auxin transport proteins, mechanisms linking, e.g., PIN sorting
to the cytoskeleton remain to be resolved (Geldner 2009;
Heisler et al. 2010; Brandizzi and Wasteneys 2013). A recent
report has come up with an intriguing model, linking MTs, the
predicted Arabidopsis retromer component SNX1 (SORTING
NEXIN 1) and PIN sorting (Ambrose et al. 2013). The authors
demonstrated that a MAP termed CLASP (CYTOPLASMIC
LINKER-ASSOCIATED PROTEIN) interacts with SNX1 to
tether retromer-associated endosomes to MTs (Fig. 2b). SNX1
has been implicated in PIN2 sorting, presumably acting as a
gating factor that promotes recycling of endocytosed PINs back
to the plasma membrane (Jaillais et al. 2006, 2008; Kleine-
Vehn et al. 2008b). In the absence of either SNX1 or CLASP,
PIN2 no longer efficiently recycles to the plasmamembrane but
relocates to the vacuole for its degradation, underlining a role
for both proteins as positive effectors of PIN recycling

(Kleine-Vehn et al. 2008b; Ambrose et al. 2013). While
conflicting evidence for CLASP function in PIN sorting has
been published elsewhere (Kakar et al. 2013), data presented
by Ambrose and colleagues strongly support a function for
MTs in PIN recycling, presumably controlled by SNX1/
CLASP-mediated tethering of sorting endosomes to MTs
(Ambrose et al. 2013). Perhaps, ROP effects on microtubule
organization modulate such interaction, indirectly affecting
sorting and recycling of PIN proteins.

Experiments and results, linking auxin-binding byABP1 to
cytoskeleton organization and PIN endocytic sorting, suggest
that variations in PIN retention time at the plasma membrane
modulate auxin efflux rates that are further translated into
developmental cues. Notably, another link between actin and
auxin transport has been established, highlighting effects of
auxin transport inhibitors (ATI) on the dynamic distribution of
the auxin transport machinery. Specifically, 2,3,5-
triiodobenzoic acid and 2-(1-pyrenoyl) benzoic acid, which
both efficiently block cellular auxin efflux, were found to
interfere with organization of the actin cytoskeleton with
drastic consequences for protein endocytosis and vesicle
motility, including the sorting of PINs (Geldner et al. 2001;
Dhonukshe et al. 2008). Whether or not treatment with ATIs
affects pathways overlapping with those controlled by ABP1
is currently not known. Nevertheless, ATI effects on the actin
cytoskeleton underline the significant role for intracellular
vesicle dynamics in the regulation of PAT.

Crosstalk between ABP1 and clathrin has established a
plausible function for this auxin receptor. However, auxin
signaling via SCFTIR1/AFB-controlled pathways contributes
to the regulation of endocytic sorting as well. Apart from
auxin-induced inhibition of PIN endocytosis, the opposite
effect, namely enhanced degradation of PINs, has been
observed upon alterations in auxin homeostasis (Sieberer
et al. 2000; Vieten et al. 2005; Abas et al. 2006; Baster et al.
2013). PIN2 in particular, undergoes vacuolar sorting in
response to altered auxin levels, presumably mediated by
increased protein ubiquitination, which signals enhanced
turnover of the auxin carrier protein (Leitner et al. 2012). It
seems possible that down-regulation of PINs in response to
auxin antagonizes inhibitory auxin effects on plasma
membrane protein endocytosis, resetting cellular PIN protein
levels back to default. This could be of particular importance
for the control of differential growth responses that involve
transient establishment of auxin maxima (Band et al. 2012).
When trying to elucidate pathways involved, it turned out that
SCFTIR1/AFB-controlled auxin signaling is essential for PIN
vacuolar sorting, while ABP1 is not, demonstrating that both
major auxin-signaling pathways are involved in overlapping
but distinct aspects of intracellular sorting of PIN proteins
(Sieberer et al. 2000; Baster et al. 2013) (Fig. 2a,b).

Insights into pathways transmitting effects of auxin
perception by ABP1 or SCFTIR1/AFB to the sorting of
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membrane proteins in general, or PIN proteins in particular,
are still rudimentary. However, given the prominent
phenotypes that can be observed, when disturbing such
signaling, it seems clear that auxin-mediated regulation of
protein sorting is one of the key regulators of plant
morphogenesis. Consistently, genetic or pharmacological
interference with cytoskeleton organization and/or clathrin-
mediated sorting processes results in phenotypic alterations,
characteristic for auxin signaling and/or transport mutants
(Dhonukshe et al. 2008; Kitakura et al. 2011; Wang et al.
2013a). While this underlines essential roles for auxin in a
multitude of developmental processes, it seems quite unlikely
that all the classical “auxin-related” phenotypes that can be
observed upon affecting, e.g., endocytic sorting processes,
arise as an exclusive consequence of altered auxin transport
or signaling. Rather it appears that phenotypes observed in
auxin signaling and transport mutants reflect widespread,
combinatorial consequences of altered protein sorting, not
necessarily directly related to a disturbance of PAT. Perhaps,
it will be necessary to reevaluate causes and consequences of
the broad phenotypic responses that arise as result of highly
pleiotropic activities of this universal plant growth regulator.

Auxin and translational control

Auxin-clathrin crosstalk underlines the hormone's role in an
evolutionary conserved pathway, whereas analysis of mutants
defective in ribosomal function have linked auxin signaling to
translational regulation, another fundamental feature of gene
expression control. Mutants affected in ribosomal protein
functionality exhibit growth defects reminiscent of phenotypes
observed upon disturbing auxin transport or signaling (Van
Lijsebettens et al. 1994; Ito et al. 2000; Weijers et al. 2001;
Degenhardt and Bonham-Smith 2008; Szakonyi and Byrne
2011). Similar auxin-related defects are caused by a mutation
in the nucleolin PARL1 (PARALLEL1 ) likely required for
ribosomal maturation (Petricka and Nelson 2007). It remains
unclear though, as to how defects in such general determinants
of cellular metabolism could result in rather specific auxin-
related phenotypes. A mechanistic link between auxin,
translational control, and protein sorting was established when
screening mutagenized Arabidopsis seedlings for defects in
vacuolar cargo sorting (Rosado et al. 2010). In this report the
authors identified mutations in the ribosomal proteins RPL4A
and RPL4D , and found that both loci are required for efficient
vacuolar sorting of synthetic reporter proteins (Miao et al.
2008; Rosado et al. 2010). In addition, rpl4a turned out to be
deficient in vacuolar targeting of PIN2, and mutant vacuolar
sorting defects could be phenocopied by application of high
concentrations of auxin, causing secretion of reporter proteins,
instead of sorting to the vacuole (Rosado et al. 2010).
Intriguingly, the authors observed that expression of RPL4A

is responsive to auxin and to inhibition of auxin transport,
which led them to suggest that auxin could modulate ribosomal
biogenesis, linking ribosome function to auxin signaling and
protein sorting (Rosado et al. 2010).

Similar to characterized ribosomal protein or ribosome
biogenesis mutants, rpl4 alleles exhibit developmental
aberrations that appear related to altered auxin responses, and
models have been put forward in an attempt to explain these
rather specific growth defects. Formation of heterogeneous
populations of ribosomes characterized by incorporation of
different ribosomal protein isoforms has been proposed to cause
variations in the ribosomes’ specificity for different transcripts
or transcript groups. As an alternative, a role for ribosomal gene
dosage, rather than variations in ribosome composition has
been suggested to modulate efficiency of protein translation,
which might affect cellular processes primarily related to auxin
signaling (Giavalisco et al. 2005; Komili et al. 2007; Carroll
et al. 2008; Rosado et al. 2010). However, all these models fall
short when trying to explain the specific defects of ribosomal
protein mutants, without further knowledge about downstream
targets modulated by such translational control.

A study by Nishimura and colleagues provided some
insights into mechanisms that could link translational control
to the regulation of auxin responses (Nishimura et al. 2005).
The authors identified a mutant they termed short valve 1
(stv1 ), exhibiting apical-basal patterning defects in the
gynoceum that are reminiscent of mutants defective in the
ARF transcriptional regulators ETTIN (ETT/ARF3 ) and
MONOPTEROS (MP/ARF5) (Sessions et al. 1997; Hardtke
and Berleth 1998). Cloning of STV1 revealed that it encodes
RPL24B , a ribosomal protein found in archaebacterial and
eukaryotic genomes and implicated in enhancing translational
efficiency (Dresios et al. 2000). On top of that, Arabidopsis
RPL24 was found to interact with a viral transactivator protein,
and to stimulate translational efficiency via translation
reinitiation of polycistronic viral RNA (Park et al. 2001). In
eukaryotes, translation reinitiation has been shown to modulate
translation of ORFs that are flanked by an upstream,
translatable ORF located in the 5′-leader region of the mature
mRNA (Kozak 1999; Roy and von Arnim 2013). Upon
initiation of translation, such uORFs are recognized by the
scanning translation initiation complex that moves along the
mRNA, prompting translation of these—often times very
small—ORFs (Rajkowitsch et al. 2004). Subsequent
translation of the “main” ORF, located downstream of the
uORF requires efficient translation reinitiation, ensuring that
the ribsome resumes scanning to recognize downstream Start
AUGs (Park et al. 2001; Zhou et al. 2010). Transcripts of both,
ETT and MP encode uORFs, which might suggest that stv1
patterning defects could reflect deficiencies in the translational
control of these ARF genes. Indeed, when expressing an
engineered ETT transcript lacking its 5′ uORF, stv1 patterning
defects were partially suppressed, supporting scenarios, in
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which RPL24B modulates auxin responsive organ
development via controlling translational reinitiation of ARF
genes (Nishimura et al. 2005). Related observations have been
made with rpl4d and rpl5a ribosomal protein mutants and with
a mutant in translational initiation factor eIF3h, seemingly
affected in translation of ARF loci that all are characterized
by uORFs in their 5′-regions (Zhou et al. 2010; Rosado et al.
2012) (Fig. 3).

Control of ARF expression via reinitiation of translation
might represent an integral part of auxin signaling cascades,
controlling intracellular protein sorting via adjustments in
transcriptional control of auxin responses (Rosado et al.
2010, 2012). However, about one third of Arabidopsis
mRNAs appears to contain uORFs (Kim et al. 2007), all
potentially subject to expression control via translation
reinitiation. Assuming that RPL24B and additional
determinants of translational control are involved in
expression control of all these loci, it appears questionable
that auxin-related growth defects arise as an exclusive
consequence of diminished expression of such a huge
proportion of the Arabidopsis proteome. Analogous to the
situation described for crosstalk between auxin and
components of the cytoskeleton, phenotypes of ribosomal
mutants clearly reflect the outstanding importance of auxin
signaling and transport. However, a closer look on phenotypes
and the proteome of these mutants is definitely required to
characterize the role of translational control in higher plants.

Another even more puzzling link between translational
control and auxin signaling was established when
characterizing a dominant, auxin-resistant Arabidopsis
mutant derived from a screen performed in the presence of
sirtinol (Perry et al. 2005). Apart from being less responsive to
externally applied auxin, mutant plants exhibited defects in
apical hook formation upon germination in the dark and

developed less lateral roots, both representing hallmark
features of auxin-response mutants. The mutation responsible
for these phenotypes was found in the anticodon loop of a
tRNAAla, changing its anticodon from 5′-CGC-3′ to 5′-CAC-
3′, which no longer recognizes alanine but valine codons,
instead (Perry et al. 2005). Given that further tRNA identity
determinants are not affected by this mutation, it seems likely
that, although charged with alanine, the mutant tRNA will
correctly associate with ribosomes and valine triplett codons,
resulting in translation of mutant proteins. The Arabidopsis
genome is predicted to contain 630 tRNA loci, amongst which
33 will recognize a codon for alanine, whereas 30 will bind to
valine codons. When not considering wobbling, seven
tRNAAla will recognize 5′-GCG-3′ codons, whereas 8
tRNAVal will interact with 5′-GUG-3′ codons, suggestive of
a substantial degree of functional redundancy within these
tRNA families ((Lowe and Eddy 1997); http://gtrnadb.ucsc.
edu/Athal/). In that respect it is quite surprising that a mutation
in a single tRNA locus is sufficient to cause such dramatic
effects on plant development. Perhaps even more surprising is
the observation that defects in auxin-controlled growth
responses appear to represent the major consequence of this
mutation. Unfortunately, we still lack detailed information on
tRNA expression control in plants (Lin et al. 1992; Stange
et al. 1992; Carneiro et al. 1994; Ulmasov and Folk 1995). So,
it remains a mystery as to how a single tRNA anticodon
mutation could produce highly defined growth defects, as
those observed by Perry and colleagues (Perry et al. 2005).

Outlook

In recent years, the plant community experienced an almost
inflationary increase of data, linking auxin to essentially every

Fig. 3 Translational control as a mediator of auxin signaling. Translation
ofmRNAs comprising uORFs commences with initiation of translation at
the AUG of the uORF (ribosomal subunits in pink). Further translation of
the main ORF positioned downstream of the uORF, depends on
efficient translation reinitiation, which is stimulated by ribosomal
proteins like RPL24 or translation initiation complex subunit eIF3

(blue ). Several mRNAs encoding ARF transcription factors were
found to contain uORFs. Variations in availability and/or functionality
of rate-limiting determinants of translation reinitiation like RPL24
could define amounts of ARF protein and additional regulatory
proteins to control auxin responses and intracellular protein
sorting
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aspect of plant growth and development. By pursuing a range
of experimental approaches, substantial progress has been
made in the molecular characterization of auxin signaling
cascades, metabolism as well as transport processes.
However, in-depth analysis and integration of all these
findings into coherent networks lags behind. This is
particularly true for some key components of the auxin
network like the PIN proteins and ABP1, as their actual
function is still not entirely resolved. Also, new approaches
are needed to elucidate crosstalk between auxin signals and
general cellular activities like cytoskeleton organization or
translational control. In the light of these far-reaching auxin
effects, a systematic characterization of the underlying
mechanisms and targets involved should be given highest
priority. This will greatly improve our understanding of plant
growth in general, and will also provide a solid foundation for
further studies aiming at an integration of auxin responses into
a multidimensional network of cellular activities.
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