514 research outputs found
Complete Break Up of Ortho Positronium (Ps)- Hydrogenic ion System
The dynamics of the complete breakup process in an Ortho Ps - He+ system
including electron loss to the continuum (ELC) is studied where both the
projectile and the target get ionized. The process is essentially a four body
problem and the present model takes account of the two centre effect on the
electron ejected from the Ps atom which is crucial for a proper description of
the ELC phenomena. The calculations are performed in the framework of Coulomb
Distorted Eikonal Approximation. The exchange effect between the target and the
projectile electron is taken into account in a consistent manner. The proper
asymptotic 3-body boundary condition for this ionization process is also
satisfied in the present model. A distinct broad ELC peak is noted in the fully
differential cross sections (5DCS) for the Ps electron corroborating
qualitatively the experiment for the Ps - He system. Both the dynamics of the
ELC from the Ps and the ejected electron from the target He+ in the FDCS are
studied using coplanar geometry. Interesting features are noted in the FDCS for
both the electrons belonging to the target and the projectile.Comment: 14 pages,7 figure
Regularizing Portfolio Optimization
The optimization of large portfolios displays an inherent instability to
estimation error. This poses a fundamental problem, because solutions that are
not stable under sample fluctuations may look optimal for a given sample, but
are, in effect, very far from optimal with respect to the average risk. In this
paper, we approach the problem from the point of view of statistical learning
theory. The occurrence of the instability is intimately related to over-fitting
which can be avoided using known regularization methods. We show how
regularized portfolio optimization with the expected shortfall as a risk
measure is related to support vector regression. The budget constraint dictates
a modification. We present the resulting optimization problem and discuss the
solution. The L2 norm of the weight vector is used as a regularizer, which
corresponds to a diversification "pressure". This means that diversification,
besides counteracting downward fluctuations in some assets by upward
fluctuations in others, is also crucial because it improves the stability of
the solution. The approach we provide here allows for the simultaneous
treatment of optimization and diversification in one framework that enables the
investor to trade-off between the two, depending on the size of the available
data set
Determining the neurotransmitter concentration profile at active synapses
Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission
Steady-state responses to concurrent melodies: source distribution, top-down, and bottom-up attention
Humans can direct attentional resources to a single sound occurring simultaneously among others to extract the most behaviourally relevant information present. To investigate this cognitive phenomenon in a precise manner, we used frequency-tagging to separate neural auditory steady-state responses (ASSRs) that can be traced back to each auditory stimulus, from the neural mix elicited by multiple simultaneous sounds. Using a mixture of 2 frequency-tagged melody streams, we instructed participants to selectively attend to one stream or the other while following the development of the pitch contour. Bottom-up attention towards either stream was also manipulated with salient changes in pitch. Distributed source analyses of magnetoencephalography measurements showed that the effect of ASSR enhancement from top-down driven attention was strongest at the left frontal cortex, while that of bottom-up driven attention was dominant at the right temporal cortex. Furthermore, the degree of ASSR suppression from simultaneous stimuli varied across cortical lobes and hemisphere. The ASSR source distribution changes from temporal-dominance during single-stream perception, to proportionally more activity in the frontal and centro-parietal cortical regions when listening to simultaneous streams. These findings are a step forward to studying cognition in more complex and naturalistic soundscapes using frequency-tagging
Johnston Press and the Crisis in Ireland's Local Newspaper Industry, 2005-2014
Reflecting international trends, Ireland’s local newspaper industry has suffered steep circulation and advertising revenue falls since the late-2000s, and has struggled to reshape traditional business models for the digital era. In harsh trading conditions, local titles are operating on reduced editorial resources and are weakened in their capacity to fulfil their traditional watchdog and informed-citizenry functions. Perhaps no company better encapsulates the industry’s recent difficulties than UK media group Johnston Press. In 2005, it paid more than €200m to acquire fourteen local titles in Ireland, but nine years later sold them for just €8.5m. The article draws on this case-study to consider wider issues related to the corporatisation of local news provision, the sustainability of local news industries in small media markets such as Ireland’s, and the increasing disconnect between local journalism’s commodity value and its public good value
Bioclimatic rehabilitation of an open market place by a computational fluid dynamics simulation assessment
These days urban design of open spaces is strongly related to bioclimatic techniques and practices. It is here presented the procedure of a bioclimatic study by the use of simulation tools. The area of an open market place is characterized of decreased human thermal comfort conditions during summer time. The employment of computational fluid dynamics has contributed in the understanding of what interventions should be made at the open space in order to succeed the defined thermal related targets. Table of the proposed rehabilitation explains what the interventions would contribute in the improvement of the local environment.The authors greatly acknowledge the support of the Mayor of Eordaia Mrs
Paraskevi Vrizidou during all simulation stages.
ANSYS-CFD simulations were carried out in the framework of student
instruction and demonstration of the Department of Environmental
Engineering, Democritus University of Thrace in Greece
Gene expression analysis indicates CB1 receptor upregulation in the hippocampus and neurotoxic effects in the frontal cortex 3 weeks after single-dose MDMA administration in Dark Agouti rats.
BACKGROUND: 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") is a widely used recreational drug known to impair cognitive functions on the long-run. Both hippocampal and frontal cortical regions have well established roles in behavior, memory formation and other cognitive tasks and damage of these regions is associated with altered behavior and cognitive functions, impairments frequently described in heavy MDMA users. The aim of this study was to examine the hippocampus, frontal cortex and dorsal raphe of Dark Agouti rats with gene expression arrays (Illumina RatRef bead arrays) looking for possible mechanisms and new candidates contributing to the effects of a single dose of MDMA (15 mg/kg) 3 weeks earlier. RESULTS: The number of differentially expressed genes in the hippocampus, frontal cortex and the dorsal raphe were 481, 155, and 15, respectively. Gene set enrichment analysis of the microarray data revealed reduced expression of 'memory' and 'cognition', 'dendrite development' and 'regulation of synaptic plasticity' gene sets in the hippocampus, parallel to the upregulation of the CB1 cannabinoid- and Epha4, Epha5, Epha6 ephrin receptors. Downregulated gene sets in the frontal cortex were related to protein synthesis, chromatin organization, transmembrane transport processes, while 'dendrite development', 'regulation of synaptic plasticity' and 'positive regulation of synapse assembly' gene sets were upregulated. Changes in the dorsal raphe region were mild and in most cases not significant. CONCLUSION: The present data raise the possibility of new synapse formation/synaptic reorganization in the frontal cortex three weeks after a single neurotoxic dose of MDMA. In contrast, a prolonged depression of new neurite formation in the hippocampus is suggested by the data, which underlines the particular vulnerability of this brain region after the drug treatment. Finally, our results also suggest the substantial contribution of CB1 receptor and endocannabinoid mediated pathways in the hippocampal impairments. Taken together the present study provides evidence for the participation of new molecular candidates in the long-term effects of MDMA
A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition
Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The
plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis
of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread
action on brain function through modulation of synap–tic transmission and plasticity. Recent experimental studies have
characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain
regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and
memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and
investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI), a prominent form of shortterm
synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key
characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical
description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to
test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked.
The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit
DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing
rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate
experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a
stepping stone for future deciphering of the role of endocannabinoids in synaptic transmission as a feedback mechanism
both at synaptic and network level
Nuclear astrophysics with radioactive ions at FAIR
The nucleosynthesis of elements beyond iron is dominated by neutron captures in the s and r processes. However, 32 stable, proton-rich isotopes cannot be formed during those processes, because they are shielded from the s-process flow and r-process, β-decay chains. These nuclei are attributed to the p and rp process. For all those processes, current research in nuclear astrophysics addresses the need for more precise reaction data involving radioactive isotopes. Depending on the particular reaction, direct or inverse kinematics, forward or time-reversed direction are investigated to determine or at least to constrain the desired reaction cross sections. The Facility for Antiproton and Ion Research (FAIR) will offer unique, unprecedented opportunities to investigate many of the important reactions. The high yield of radioactive isotopes, even far away from the valley of stability, allows the investigation of isotopes involved in processes as exotic as the r or rp processes
- …
