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Abstract. The optimization of large portfolios displays an inherent instability
due to estimation error. This poses a fundamental problem, because solutions that
are not stable under sample fluctuations may look optimal for a given sample, but
are, in effect, very far from optimal with respect to the average risk. In this paper,
we approach the problem from the point of view of statistical learning theory.
The occurrence of the instability is intimately related to over-fitting, which
can be avoided using known regularization methods. We show how regularized
portfolio optimization with the expected shortfall as a risk measure is related
to support vector regression. The budget constraint dictates a modification. We
present the resulting optimization problem and discuss the solution. The L2
norm of the weight vector is used as a regularizer, which corresponds to a
diversification ‘pressure’. This means that diversification, besides counteracting
downward fluctuations in some assets by upward fluctuations in others, is also
crucial because it improves the stability of the solution. The approach we provide
here allows for the simultaneous treatment of optimization and diversification in
one framework that enables the investor to trade off between the two, depending
on the size of the available dataset.
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1. Introduction

Markowitz’s portfolio selection theory [1, 2] is one of the pillars of theoretical finance. It has
greatly influenced theory and practice in investment, capital allocation, index tracking and a
number of other fields. Its two major ingredients are (i) seeking a trade-off between risk and
reward and (ii) exploiting the cancelation between fluctuations of (anti-)correlated assets. In
the original formulation of the theory, the underlying process was assumed to be multivariate
normal. Accordingly, reward was measured in terms of the expected return, and risk in terms of
the variance of the portfolio.

The fundamental problem of this scheme (shared by all the other variants that have been
introduced since) is that the characteristics of the underlying process generating the distribution
of asset prices are not known in practice, and therefore averages are replaced by sums over the
available sample. This procedure is well justified as long as the sample size, T (i.e. the length of
the available time series for each item), is sufficiently large compared to the size of the portfolio,
N (i.e. the number of items). In that limit, sample averages asymptotically converge to the true
average due to the central limit theorem.

Unfortunately, the nature of portfolio selection is not compatible with this limit.
Institutional portfolios are large, with Ns in the range of hundreds or thousands, while
considerations of transaction costs and non-stationarity limit the number of available data points
to a couple of hundred at most. Therefore, portfolio selection works in a region where N and
T are, at best, of the same order of magnitude. This, however, is not the realm of classical
statistical methods. Portfolio optimization is closer to a situation which, borrowing a term from
statistical physics, might be termed the ‘thermodynamic limit’, where N and T tend to infinity
such that their ratio remains fixed.

It is evident that portfolio theory struggles with the same fundamental difficulty that
underlies every complex modeling and optimization task: the high number of dimensions and
the insufficient amount of information available about the system. This difficulty has existed in
portfolio selection from the early days, and a plethora of methods have been proposed to cope
with it, e.g. single and multi-factor models [3], Bayesian estimators [4]–[17] or, more recently,
tools borrowed from random matrix theory [18]–[23]. In the thermodynamic regime, estimation
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errors are large, sample-to-sample fluctuations are huge, and results obtained from one sample
do not generalize well and can be quite misleading concerning the true process.

The same problem has received considerable attention in the area of machine learning. We
discuss how the observed instabilities in portfolio optimization (elaborated in section 2) can
be understood and remedied by looking at portfolio theory from the point of view of machine
learning.

Portfolio optimization is a special case of regression, and therefore can be understood
as a machine learning problem (see section 3). In machine learning, as well as in portfolio
optimization, one wishes to minimize the actual risk, which is the risk (or error) evaluated
by taking the ensemble average. This quantity, however, cannot be computed from the data,
only the empirical risk can. The difference between the two is not necessarily small in the
thermodynamic limit, so that a small empirical risk does not automatically guarantee small
actual risk [24].

Statistical learning theory [24]–[26] finds upper bounds on the generalization error
that hold with a certain accuracy. These error bounds quantify the expected generalization
performance of a model, and they decrease with decreasing capacity of the function class
that is being fitted to the data. Lowering the capacity therefore lowers the error bound and
thereby improves generalization. The resulting procedure is also referred to as regularization
and essentially prevents over-fitting (see section 4).

In the thermodynamic limit, portfolio optimization needs to be regularized. We show in
section 5 how the above-mentioned concepts, which find their practical application in support
vector machines [27, 28], can be used for portfolio optimization. Support vector machines
constitute an extremely powerful class of learning algorithms, which have met with considerable
success. We show that regularized portfolio optimization (RPO), using the expected shortfall as
a risk measure, is almost identical to support vector regression (SVR), apart from the budget
constraint. We provide the modified optimization problem, which can be solved by linear
programming.

In section 6, we discuss the financial meaning of the regularizer: minimizing the L2
norm of the weight vector corresponds to a diversification pressure. We also discuss alternative
constraints that could serve as regularizers in the context of portfolio optimization.

Taking this machine learning angle allows one to organize a variety of ideas in the existing
literature on portfolio optimization filtering methods into one systematic and well-developed
framework. There are basically two choices to be made: (i) which risk measure to use and
(ii) which regularizer. These choices result in different methods, because different optimization
problems are being solved.

While we focus here on the popular expected shortfall risk measure (in section 5), the
variance has a long history as an important risk measure in finance. Several existing filtering
methods that use the variance risk measure essentially implement regularization, without
necessarily stating so explicitly. The only work we found that explicitly mentions regularization
in the context of portfolio optimization [7] has not received much notice in the ensuing, closely
related, literature. It is easy to show that when the L2 norm is used as a regularizer, then
regularizing portfolio optimization results in a method that is closely related (with the difference
of the additional budget constraint) to Bayesian ridge regression, which uses a Gaussian prior on
the weights. The work on covariance shrinkage, such as [8]–[11], falls into the same category.
Other priors can be used [17], which can be expected to lead to different results (for an insightful
comparison see, e.g., [29]). Using the L1 norm has been popularized in statistics as the least
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absolute shrinkage and selection operator (LASSO) [29], and methods that use any Lp norm are
also known as the ‘bridge’ [30].

2. Preliminaries—instability of classical portfolio optimization

Portfolio optimization in large institutions operates in what we call the thermodynamic limit,
where both the number of assets and the number of data points are large, with their ratio a
certain, typically not very small, number. The estimation problem for the mean is so serious
[31, 32] as to make the trade-off between risk and return largely illusory. Therefore, following a
number of authors [8, 9], [33]–[35], we focus on the minimum risk portfolio and drop the usual
constraint on the expected return. This is also in line with previous work (see [36] and references
therein), and makes the treatment simpler without compromising the main conclusions. An
extension of the results to the more general case is straightforward.

Nevertheless, even if we forget about the expected return constraint, the problem still
remains that covariances have to be estimated from finite samples. It is an elementary fact from
linear algebra that the rank of the empirical N × N covariance matrix is the smaller of N and T .
Therefore, if T < N , the covariance matrix is singular and the portfolio selection task becomes
meaningless. The point T = N thus separates two regions: for T > N , the portfolio problem
has a solution, whereas for T < N , it does not.

Even if T is larger than N , but not much larger, the solution to the minimum variance pro-
blem is unstable under sample fluctuations, which means that it is not possible to find the optimal
portfolio in this way. This instability of the estimated covariances, and hence of the optimal
solutions, has been generally known in the community; however, the full depth of the problem
has only been recognized recently, when it was pointed out that the average estimation error
diverges at the critical point N = T [37]–[39].

In order to characterize the estimation error, Kondor and co-workers used the ratio q2
0

between (i) the risk, evaluated at the optimal solution obtained by portfolio optimization
using finite data, and (ii) the true minimal risk. This quantity is a measure of generalization
performance, with perfect performance when q2

0 = 1, and increasingly bad performance as q2
0

increases. As found numerically in [38] and demonstrated analytically by random matrix theory
techniques in [40], the quantity q0 is proportional to (1 − N/T )−1/2 and diverges when T goes
to N from above.

The identification of the point N = T as a phase transition [36, 41] allowed for the
establishment of a link between portfolio optimization and the theory of phase transitions,
which helped to organize a number of seemingly disparate phenomena into a single coherent
picture with a rich conceptual content. For example, it has been shown that the divergence is
not a special feature of the variance, but persists under all the other alternative risk measures
that have been investigated so far: historical expected shortfall, maximal loss, mean absolute
deviation, parametric VaR, expected shortfall and semivariance [36], [41]–[43]. The critical
value of the N/T ratio, at which the divergence occurs, depends on the particular risk measure
and on any parameter that the risk measure may depend on (such as the confidence level in
expected shortfall). However, as a manifestation of universality, the power law governing the
divergence of the estimation error is independent of the risk measure [36, 41, 42], the covariance
structure of the market [39] and the statistical nature of the underlying process [44]. Ultimately,
this line of thought led to the discovery of the instability of coherent risk measures [45].
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3. Statistical reasons for the observed instability in portfolio optimization

As mentioned above, for the simplicity and clarity of the treatment, we do not impose a
constraint on the expected return, and only look for the global minimum risk portfolio. This
task can be formalized as follows. Given a fixed budget, customarily taken to be unity, given
T past measurements of the returns of N assets, x k

i , i = 1, . . . , N , k = 1, . . . , T , and given the
risk functional F(w · x), find a weighted sum (the portfolio), w · x,4 such that it minimizes the
actual risk

R(w) = 〈F(w · x)〉p(x), (1)

under the constraint that
∑

iwi = 1. The central problem is that one does not know the
distribution p(x), which is assumed to underlie the generation of the data. In practice, one then
minimizes the empirical risk, replacing ensemble averages by sample averages:

Remp(w) =
1

T

T∑
k=1

F(w · x(k)). (2)

Now, let us interpret the weight vector as a linear model. The model class given by the
linear functions has a capacity h, which is a concept that has been introduced by Vapnik
and Chervonenkis in order to measure how powerful a learning machine is [24]–[26]. (In
the statistical learning literature, a learning machine is thought of as having a function
class at its disposal, together with an induction principle and an algorithmic procedure for
the implementation thereof [46].) The capacity measures how powerful a function class is,
and thereby also how easy it is to learn a model of that class. The rough idea is this: a
learning machine has larger capacity if it can potentially fit more different types of datasets.
Higher capacity comes, however, at the cost of potentially over-fitting the data. Capacity can
be measured, for example, by the Vapnik–Chervonenkis (VC) dimension [24], which is a
combinatoric measure that counts how many data points can be separated in all possible ways
by any function of a given class.

To make the idea tangible for linear models, we focus on two dimensions (N = 2). For
each number of points, n, one can choose the geometrical arrangement of the points in the plane
freely. Once it is chosen, points are labeled by one of two labels, let us say ‘red’ and ‘blue’.
Can a line separate the red points from the blue points for any of the 2n different ways in which
the points could be colored? The VC dimension is the largest number of points for which this
can be done. Two points can trivially be separated by a line. Three points that are not arranged
collinearly can still be separate for any of the eight possible labelings. However, for four points
this is no longer the case, since there is no geometrical arrangement for which one could not
find a labeling that cannot be separated by a line. The VC dimension is 3, and in general, for
linear models in N dimensions, it is N + 1 [46, 47].

In the regime in which the number of data points is much larger than the capacity of the
learning machine, h/T � 1, a small empirical risk guarantees a small actual risk [24]. For linear
functions through the origin that are otherwise unconstrained, the VC dimension grows with N .
In the thermodynamic regime, where N/T is not very small, minimizing the empirical risk does
not necessarily guarantee a small actual risk [24]. Therefore, it is not guaranteed to produce a
solution that generalizes well to other data drawn from the same underlying distribution.

4 Notation: bold face symbols are understood to denote vectors.
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In solving the optimizing problem that minimizes the empirical risk, equation (2) in the
regime in which N/T is not very small, portfolio optimization over-fits the observed data. It
thereby finds a solution that essentially pays attention to the seeming correlations in the data
which come from estimation noise due to finite sample effects, rather than from real structure.
The solution is thus different for different realizations of the data, and does not necessarily come
close to the actual optimal portfolio.

4. Overcoming the instability

The generalization error can be bounded from above (with a certain probability) by the empirical
error, plus a confidence term that increases monotonically with some measure of the capacity,
and depends on the probability with which the bound holds [48]. Several different bounds have
been established, connected with different measures of capacity, see, e.g., [47].

Poor generalization and over-fitting can be improved upon by decreasing the capacity of
the model [25, 26], which helps to lower the generalization error. Support vector machines are
a powerful class of algorithms that implement this idea.

We suggest that if one wants to find a solution to the portfolio optimization problem in the
thermodynamic regime, then one should not only minimize the empirical risk alone, but also
constrain the capacity of the portfolio optimizer (the linear model).

The capacity of a linear model is minimized when the length of the weight vector is
minimized [25, 26]. Vapnik’s concept of structural risk minimization [48] results in the support
vector algorithm [27, 28], which finds the model with the smallest capacity that is consistent
with the data, that is, the model with the smallest ‖w‖

2. This leads to a convex constrained
optimization problem [27, 28], which can be solved using linear programming.

5. Regular portfolio optimization (RPO) with the expected shortfall risk measure

While the original Markowitz’s formulation [1] measures risk by the variance, many other risk
measures have been proposed since. Today, the most widely used risk measure, both in practice
and in regulation, is Value at Risk (VaR) [49, 50]. VaR has, however, been criticized for its
lack of convexity, see, e.g., [51]–[53], and an axiomatic approach, leading to the introduction
of the class of coherent risk measures, was put forward [51]. Expected shortfall, essentially a
conditional average measuring the average loss above a high threshold, has been demonstrated
to belong to this class [54]–[56].

Expected shortfall has been steadily gaining in popularity in recent years. The
regularization that we propose here is intended to cure its weak point, the sensitivity to sample
fluctuations, at least for reasonable values of the ratio N/T .

Choose the risk functional F(z) = zθ(z − αβ), where αβ is a threshold, such that a given
fraction β of the (empirical) loss distribution over z lies above αβ . One now wishes to minimize
the average over the remaining tail distribution, containing the fraction ν := 1 − β, and defines
the expected shortfall as

E S = min
ε

[
ε +

1

νT

T∑
k=1

1

2

(
−ε − w · x(k) + | − ε − w · x(k)

|
)]

. (3)
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The term in the sum implements the θ function, while ν in the denominator ensures
normalization of the tail distribution. It has been pointed out [57] that this optimization problem
maps onto solving the linear program:

min
w,ξ,ε

[
1

T

T∑
k=1

ξk + νε

]
(4)

s.t. w · x(k) + ε + ξk > 0; ξk > 0; (5)∑
i

wi = 1. (6)

We propose implementing regularization by including the minimization of ‖w‖
2. This can be

done using a Lagrange multiplier, C , to control the trade-off—as we relax the constraint on the
length of the weight vector, we can, of course, make the empirical error go to zero and retrieve
the solution to the minimal expected shortfall problem. The new optimization problem reads

min
w,ξ,ε

[
1

2
‖w‖

2 + C

(
1

T

T∑
k=1

ξk + νε

)]
(7)

s.t. − w · x(k) 6 ε + ξk; (8)

ξk > 0; ε > 0; (9)∑
i

wi = 1. (10)

The problem is mathematically almost identical to an SVR algorithm called ν-SVR. There are
two differences: (i) the budget constraint is added and (ii) the loss function is asymmetric.
Expected shortfall is an asymmetric version of the ε-intensive loss, used in SVR, defined as
the maximum of {0; | f (x) − y| − ε}, where f (x) is the interpolant and y is the measured value
(response). In that sense, ε measures an allowable error below which deviations are discarded5.

The use of asymmetric risk measures in finance is motivated by the consideration that
investors are not afraid of upside fluctuations. However, to make the relationship to SVR as
clear as possible, we will first solve the more general symmetrized problem, before restricting
our treatment to the completely asymmetric case, corresponding to expected shortfall. In
addition, one may argue that focusing exclusively on large negative fluctuations might not be
advisable even from a financial point of view, especially when one does not have sufficiently
large samples. In a relatively small sample, it may happen that a particular item, or a certain
combination of items, dominates the rest, i.e. produces a larger return than any other item in the
portfolio at each time point, even though no such dominance exists on longer time scales. The
probability of such an apparent arbitrage increases with the ratio N/T , and when it occurs it may
encourage an investor acting on a lopsided risk measure to take up very large long positions in
the dominating item(s), which may turn out to be detrimental in the long run. This is the essence
of the argument that has led to the discovery of the instability of coherent and downside risk
measures [43, 45].

5 The similarity between minimum expected shortfall and the Eν-SVM algorithm [58] was used in [59] to provide
a motivation for Eν-SVM. They considered a different problem, where the budget constraint was disregarded,
because their focus was not on portfolio optimization, but rather on improving the Eν-SVM algorithm.
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According to the above, let us consider the general case where positive deviations are also
penalized. The objective function, equation (7), then becomes

min
w,ξ,ε

[
1

2
‖w‖

2 + C

(
1

T

T∑
k=1

(
ξk + ξ ∗

k

)
+ νε

)]
, (11)

and additional constraints have to be added to equations (8)–(10):

w · x(k) 6 ε + ξ ∗

k ; ξ ∗

k > 0. (12)

This problem corresponds to ν-SVR, a well-understood regression method [60], with the only
difference being that the budget constraint, equation (10), is added here. In the finance context,
the associated loss might be called symmetric tail average (STA). Solving the regularized
expected shortfall minimization problem, equations (7)–(10), is a special case of solving the
regularized STA minimization problem, equation (11), with the constraints equations (8)–(10)
and (12). Therefore, we solve the more general problem first (section 5.1), before providing, in
section 5.2, the solution to the regularized expected shortfall, equations (7)–(10).

5.1. Regularized symmetric tail average (STA) minimization

The solution to the regularized STA problem, equation (11) with the constraints equations
(8)–(10) and (12), is found in analogy to SVR, following [60], by writing down the Lagrangian,
using Lagrange multipliers, {α, α∗, γ, λ, η, η∗

}, for the constraints. The solution is then a saddle
point, i.e. minimum over primal and maximum over dual variables. The Lagrangian is different
from the one that arises in ν-SVR in that it is modified by the budget constraint:

L[w, ξ, ξ ∗, ε, α, α∗, γ, λ, η, η∗] =
1

2
‖w‖

2 +
C

T

T∑
k=1

(ξk + ξ ∗

k ) + Cνε − λε + γ

(∑
i

wi − 1

)

+
T∑

k=1

α∗

k (w · x(k)
− ε − ξ ∗

k ) −

T∑
k=1

αk(w · x(k) + ε + ξk) −

T∑
k=1

(ηkξk + η∗

kξ
∗

k ), (13)

= F[w] + ε

(
Cν − λ −

T∑
k=1

(αk + α∗

k )

)
− γ

+
T∑

k=1

[
ξk

(
C

T
− αk − ηk

)
+ ξ ∗

k

(
C

T
− α∗

k − η∗

k

)]
, (14)

with

F[w] = w ·

(
1

2
w −

(
T∑

k=1

(αk − α∗

k )x
(k)

− γ 1

))
, (15)

where 1 denotes the unit vector of length N . Setting the derivative of the Lagrangian w.r.t. w to
zero gives

wopt =

T∑
k=1

(αk − α∗

k )x
(k)

− γ 1. (16)
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This solution for the optimal portfolio is sparse in the sense that, due to the
Karush–Kuhn–Tucker conditions (see, e.g., [61]), only those points contribute to the optimal
portfolio weights, for which the inequality constraints in (8), and the corresponding constraints
in equation (12), are met exactly. The solution of wopt contains only those points, and effectively
ignores the rest. This sparsity contributes to the stability of the solution. RPO operates, in
contrast to general regression, with a fixed budget. As a consequence, the Lagrange multiplier γ

now appears in the optimal solution, equation (16). Compared to the optimal solution in SVR,
wSV, the solution vector under the budget constraint, wRPO, is shifted by γ :

wRPO = wSV − γ 1. (17)

Let us now consider the dual problem. The dual is, in general, a function of the dual variables,
which are here {α, α∗, γ, λ, η, η∗

}, although we will see in the following that some of these
variables drop out. The dual is defined as D := minw,ξ,ξ∗,ε L[w, ξ, ξ ∗, ε, α, α∗, γ, λ, η, η∗], and
the dual problem is then to maximize D over the dual variables. We can replace the minimization
over w by evaluating the Lagrangian at wopt. For that, we have to evaluate

F[wopt] = −
1

2
‖wopt‖

2 (18)

=

−
1

2

(
T∑

k=1

(αk − α∗

k )x
(k)

− γ 1

)2
 . (19)

For the other terms in the Lagrangian, we have to consider different cases.

(i) If (Cν − λ −
∑T

k=1(αk + α∗

k )) < 0, then L can be minimized by letting ε → ∞, which
means that D = −∞.

(ii) If (Cν − λ −
∑T

k=1(αk + α∗

k ))> 0, the term ε(Cν − λ −
∑T

k=1(αk + α∗

k )) vanishes. This is
because if equality holds, this is trivially true, and if the inequality holds strictly, then L
can be minimized by setting ε = 0.

Similarly, for the other constraints (the notation (∗) means that this is true for variables with and
without the asterisk) we reason as follows.

(i) If (C
T − α

(∗)

k − η
(∗)

k ) < 0, then L can be minimized by letting ξ
(∗)

k → ∞, which means that
D = −∞.

(ii) If (C
T − α

(∗)

k − η
(∗)

k )> 0, then ξk (C
T − α

(∗)

k − η
(∗)

k ) = 0. This is because if the inequality holds
strictly, then L can be minimized by ξ

(∗)

k = 0. If the equality holds, then it is trivially true.

Altogether we have that either D = −∞, or

D(α, α∗, γ ) = min
ξ,ξ∗,ε

F[wopt(α, α∗, γ )] = −
1

2
‖wopt‖

2
− γ (20)

and
T∑

k=1

(α∗

k + αk)6 Cν − λ (21)

and

α
(∗)

k + η
(∗)

k 6
C

T
. (22)
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Note that the variables ξ
(∗)

k , η
(∗)

k , ε, λ do not appear in F[wopt(α, α∗, γ )]. The dual problem is
therefore given by

max
α,α∗,γ

−
1

2

(
T∑

k=1

(αk − α∗

k )x
(k)

− γ 1

)2

− γ

 (23)

s.t. {αk, α
∗

k } ∈

[
0,

C

T

]
, (24)

T∑
k=1

(α∗

k + αk)6 Cν. (25)

The budget constraint implies that

γ =
1

N

(
T∑

k=1

(αk − α∗

k )

N∑
i=1

x (k)

i − 1

)
. (26)

The optimal projection (= optimal portfolio) is given by

wopt · x =

T∑
k=1

(αk − α∗

k )x
(k)

· x −
1

N

(
T∑

k=1

(αk − α∗

k )

N∑
i=1

x (k)

i − 1

)
1 · x. (27)

For N → ∞, the second term vanishes and the solution is the same as the solution in SVR. Note
that the kernel-trick (see, e.g., [47]), which is used in support vector machines to find nonlinear
models, hinges on the fact that only dot products of input vectors appear in the support vector
expansion of the solution. As a consequence of the budget constraint, one can no longer use the
kernel-trick (compare equation (27)). As long as we disregard derivatives, this is not a problem
for portfolio optimization. Keep in mind, however, that the budget constraint introduces this
otherwise undesirable property.

Support vector algorithms typically solve the dual form of the problem (for a recent survey,
see [62]), which is in our case given by

max
α,α∗

−
1

2

[
T∑

k=1

T∑
l=1

(αk − α∗

k )(αl − α∗

l )

(
x(k)x(l)

−
1

N

N∑
i=1

x (k)

i

N∑
i=1

x (l)
i

)

+
T∑

k=1

(αk − α∗

k )
1

N

N∑
i=1

x (k)

i

]
(28)

The solution can be found numerically by linear programming, for which software packages
are available [63]. This modified SVM-type problem can be solved by appropriately modifying
existing methods. Solvers such as the ones discussed in [62, 64] can be used, but have to be
adapted to this specific problem.

The regularized STA minimization problem (equation (11) with the constraints equations
(8)–(10) and (12)) is, as we have shown here, directly related to SVR, which uses the
ε-insensitive loss function. The ε-insensitive loss is stable to local changes for data points that
fall outside the range specified by ε. This point is elaborated in section 3 in [60], and relates
this method to robust estimation of the mean. It can also be extended to robust estimation of
quantiles [60] by scaling of the slack variables ξk by µ and ξ ∗

k by 1 − µ.
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This scaling translates directly to the portfolio optimization problem, which is an extreme
case: downside risk measures penalize only loss, not gain. The asymmetry in the loss function
corresponds to µ = 1.

5.2. Regularized expected shortfall

By this final change, we arrive at the RPO problem, equations (7)–(10), which we originally
set out to solve. This is now easily solved in analogy to the previous paragraphs: the
slack variables ξ ∗

k disappear, together with the respective Lagrange multipliers that enforce
constraints, including α∗

k . The optimal solution is now

wopt =

T∑
k=1

αkx(k)
− γ 1, (29)

with

γ =
1

N

(
T∑

k=1

αk

N∑
i=1

x (k)

i − 1

)
. (30)

The dual problem is given by

max
αk

−
1

2

[
T∑

k=1

T∑
l=1

αkαl

(
x(k)x(l)

−
1

N

N∑
i=1

x (k)

i

N∑
i=1

x (l)
i

)]

+
T∑

k=1

αk
1

N

N∑
i=1

x (k)

i , (31)

which, like its symmetric counterpart, equation (28), can be solved by adjusting existing
algorithms.

The formalism provides a free parameter, C , to set the balance between the original risk
function and the regularizer. Its choice may depend on a number of factors, such as the investor’s
time horizon, the nature of the underlying data and, crucially, the ratio N/T . Intuitively,
there must be a maximum allowable value Cmax(N/T ) for C , such that when one puts more
emphasis on the data, C > Cmax(N/T ), then over-fitting will occur with high probability. It
would be desirable to know an analytic expression for (a bound on) Cmax(N/T ). In practice,
cross-validation methods are often employed in machine learning to set the value of C . Those
methods are not free of problems (see, e.g., the treatment in [65]), and the optimal choice of this
parameter remains an open problem.

6. Regularization corresponds to portfolio diversification

Above, we have controlled the capacity of the linear model by minimizing the L2 norm of the
portfolio weight vector. In the finance context, minimizing

‖w‖
2
=

∑
i

w2
i '

1

Neff
(32)

corresponds roughly to maximizing the effective number of assets, Neff, i.e. to exerting a
pressure towards portfolio diversification [66]. We conclude that diversification of the portfolio
is crucial, because it serves to counteract the observed instability by acting as a regularizer.
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Other constraints that penalize the length of the weight vector could alternatively be
considered as a regularizer, in particular any Lp norm. The budget constraint alone, however,
does not suffice as a regularizer, since it does not constrain the length of the weight vector.
Adding a ban on short selling, wi > 0, to the budget constraint,

∑
iwi = 1, limits the allowable

solutions to a finite volume in the space of weights and is equivalent to requiring that
∑

i |wi |6
1.6 It thereby imposes a limit on the L1 norm, that is, on the sum of the absolute amplitudes of
long and short positions.

One may argue that it may be a good idea to use the L1 norm instead of the L2 norm,
because that may make the solution sparser. However, the L1 norm has a tendency to make
some of the weights vanish. Indeed, it has been shown that in the orthonormal design case
(using the variance as the risk measure), an L1 regularizer will set some of the weights to zero,
while an L2 regularizer will scale all the weights [29]. The spontaneous reduction of portfolio
size has also been demonstrated in numerical simulations [67]: as one goes deeper and deeper
into the regime where T is significantly smaller than N , under a ban on short selling, more and
more of the weights will become zero. The same ‘freezing out’ of the weights has been observed
in portfolio optimization [68] as an empirical fact.

It is important to stress that the vanishing of some of the weights does not reflect any
structural property of the objective function; it is just a random effect: as clearly demonstrated
by simulations [67], for a different sample a different set of weights vanishes. The angle of the
weight vector fluctuates wildly from sample to sample. (The behavior of the solutions is similar
for other limit systems as well.) This means that the solutions will be determined by the limit
system and the random sample rather than by the structure of the market. So the underlying
instability is merely ‘masked’, in that the solutions do not run away to infinity, but they are still
unstable under sample fluctuations when T is too small. As it is certainly not in the interest of
the investor to obtain a portfolio solution that sets weights to zero on the basis of unreliable
information from small samples, the above observations speak strongly in favor of using the L2
norm over the L1 norm.

7. Conclusion

We have made the observation that the optimization of large portfolios minimizes the empirical
risk in a regime where the dataset size is similar to the size of the portfolio. In that regime, a
small empirical risk does not necessarily guarantee a small actual risk [24]. In this sense, naive
portfolio optimization over-fits the data. Regularization can overcome this problem by reducing
the capacity of the considered model class.

RPO has choices to make, not only about the risk function but also about the regularizer.
Here, we have focussed on the increasingly popular expected shortfall risk measure. Using
the L2 norm as a regularizer leads to a convex optimization problem that can be solved by
linear programming. We have shown that RPO is then a variant of SVR. The differences are the
asymmetry, due to the tolerance to large positive deviations, and the budget constraint, which is
not present in regression.

Our treatment provides a novel insight into why diversification is so important. The L2
regularizer implements a pressure towards portfolio diversification. Therefore, from a statistical

6 This point has been made independently in [17]. To see that the constraints
∑

iwi = 1 ∧ wi > 0, ∀i are equivalent
to
∑

i |wi |6 1 ∧
∑

iwi = 1, firstly, note that
∑

iwi = 1 ∧ wi > 0, ∀i ⇒
∑

i |wi | = 1. Secondly, note that
∑

i |wi |6

1 ∧
∑

iwi = 1 ⇒
∑

i(|wi | −wi )6 0 ⇔
∑

i∈I |wi |6 0, where I := {i : wi < 0}, and this can only be true if I = ∅.
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point of view, diversification is important as it is one way to control the capacity of the portfolio
optimizer and thereby to find a solution that is more stable, and hence meaningful.

In summary, the method that we have outlined in this paper allows for the unified treatment
of optimization and diversification in one principled formalism. It shows how known methods
from modern statistics can be used to improve the practice of portfolio optimization.
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