777 research outputs found
Computation of conservation laws in optimal control
Making use of a computer algebra system, we define computational tools to identify symmetries and conservation laws in optimal control
What is the impact on fish recruitment of anthropogenic physical and structural habitat change in shallow nearshore areas in temperate systems? A systematic review protocol
Shallow nearshore marine ecosystems are changing at an increasing rate due to a range of human activities such as urbanisation and commercial development. The growing numbers of constructions and other physical and structural alterations of the shoreline often take place in nursery and spawning habitats of many fish and other aquatic species. Several coastal fish populations have seen marked declines in abundance and diversity during the past two decades. A systematic review on the topic would clarify if anthropogenic physical and structural changes of near-shore areas have effects on fish recruitment and which these effects are. Methods: The review will examine how various physical and structural anthropogenic changes of nearshore fish habitats affect fish recruitment. Relevant studies include small- and large-scale field studies in marine and brackish systems or large lakes in temperate regions of the Northern and Southern hemispheres. Relevant studies may be based on comparisons between undisturbed and disturbed areas, before and after disturbance, or both. Relevant outcomes include measures of recruitment defined as abundance of juveniles of nearshore fish communities. Searches will be made for peer-reviewed and grey literature in English, Dutch, Danish, Finnish, German, Swedish and Spanish. All fish species and species groups will be considered in this review. Included relevant studies will be subject to a critical appraisal that will assess study validity. From relevant included studies, we will extract information on study characteristics, measured outcomes, exposure, comparators, effect modifiers and critical appraisal. Data synthesis will contain narrative and summary findings of each included study of sufficient quality. Meta-analysis may be possible in cases where studies report similar types of outcome
Optics and children
Light and Optics are subjects that “naturally” attracts the interest and sympathy of
children even from very early ages. In this communication, we present a serie of experiments
and support material designed in this hands-on perspective, to be used to introduce the study of
light and optics to kindergarten and early basic school students. Our hands-on investigative
approach leads the students, aged 4 to 10 years, to observe the experiment and discover
themselves, in a critical and active way, different aspects of light and optics. Preparing funny
eye catching situations and experiments predispose the children to work, effectively, enjoying
themselves while building up their self-confidence.(undefined
Accuracy and repeatability of wrist joint angles in boxing using an electromagnetic tracking system
© 2019, The Author(s). The hand-wrist region is reported as the most common injury site in boxing. Boxers are at risk due to the amount of wrist motions when impacting training equipment or their opponents, yet we know relatively little about these motions. This paper describes a new method for quantifying wrist motion in boxing using an electromagnetic tracking system. Surrogate testing procedure utilising a polyamide hand and forearm shape, and in vivo testing procedure utilising 29 elite boxers, were used to assess the accuracy and repeatability of the system. 2D kinematic analysis was used to calculate wrist angles using photogrammetry, whilst the data from the electromagnetic tracking system was processed with visual 3D software. The electromagnetic tracking system agreed with the video-based system (paired t tests) in both the surrogate ( 0.9). In the punch testing, for both repeated jab and hook shots, the electromagnetic tracking system showed good reliability (ICCs > 0.8) and substantial reliability (ICCs > 0.6) for flexion–extension and radial-ulnar deviation angles, respectively. The results indicate that wrist kinematics during punching activities can be measured using an electromagnetic tracking system
Multi-step self-guided pathways for shape-changing metamaterials
Multi-step pathways, constituted of a sequence of reconfigurations, are
central to a wide variety of natural and man-made systems. Such pathways
autonomously execute in self-guided processes such as protein folding and
self-assembly, but require external control in macroscopic mechanical systems,
provided by, e.g., actuators in robotics or manual folding in origami. Here we
introduce shape-changing mechanical metamaterials, that exhibit self-guided
multi-step pathways in response to global uniform compression. Their design
combines strongly nonlinear mechanical elements with a multimodal architecture
that allows for a sequence of topological reconfigurations, i.e., modifications
of the topology caused by the formation of internal self-contacts. We realized
such metamaterials by digital manufacturing, and show that the pathway and
final configuration can be controlled by rational design of the nonlinear
mechanical elements. We furthermore demonstrate that self-contacts suppress
pathway errors. Finally, we demonstrate how hierarchical architectures allow to
extend the number of distinct reconfiguration steps. Our work establishes
general principles for designing mechanical pathways, opening new avenues for
self-folding media, pluripotent materials, and pliable devices in, e.g.,
stretchable electronics and soft robotics.Comment: 16 pages, 3 main figures, 10 extended data figures. See
https://youtu.be/8m1QfkMFL0I for an explanatory vide
Producing valid statistics when legislation, culture, and medical practices differ for births at or before the threshold of survival: Report of a European workshop
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Downloa
Prevalence and risk of Down syndrome in monozygotic and dizygotic multiple pregnancies in Europe: implications for prenatal screening.
OBJECTIVE: To determine risk of Down syndrome (DS) in multiple relative to singleton pregnancies, and compare prenatal diagnosis rates and pregnancy outcome.
DESIGN: Population-based prevalence study based on EUROCAT congenital anomaly registries.
SETTING: Eight European countries.
POPULATION: 14.8 million births 1990-2009; 2.89% multiple births.
METHODS: DS cases included livebirths, fetal deaths from 20 weeks, and terminations of pregnancy for fetal anomaly (TOPFA). Zygosity is inferred from like/unlike sex for birth denominators, and from concordance for DS cases.
MAIN OUTCOME MEASURES: Relative risk (RR) of DS per fetus/baby from multiple versus singleton pregnancies and per pregnancy in monozygotic/dizygotic versus singleton pregnancies. Proportion of prenatally diagnosed and pregnancy outcome.
STATISTICAL ANALYSIS: Poisson and logistic regression stratified for maternal age, country and time.
RESULTS: Overall, the adjusted (adj) RR of DS for fetus/babies from multiple versus singleton pregnancies was 0.58 (95% CI 0.53-0.62), similar for all maternal ages except for mothers over 44, for whom it was considerably lower. In 8.7% of twin pairs affected by DS, both co-twins were diagnosed with the condition. The adjRR of DS for monozygotic versus singleton pregnancies was 0.34 (95% CI 0.25-0.44) and for dizygotic versus singleton pregnancies 1.34 (95% CI 1.23-1.46). DS fetuses from multiple births were less likely to be prenatally diagnosed than singletons (adjOR 0.62 [95% CI 0.50-0.78]) and following diagnosis less likely to be TOPFA (adjOR 0.40 [95% CI 0.27-0.59]).
CONCLUSIONS: The risk of DS per fetus/baby is lower in multiple than singleton pregnancies. These estimates can be used for genetic counselling and prenatal screening
An investigation to assess ankle mobility in healthy individuals from the application of multi-component compression bandages and compression hosiery
Background An investigation was undertaken to compare the effect of multi-component compression bandages and compression hosiery kits on individuals’ range of ankle motion whilst wearing typical and medical footwear, and barefoot. Methods A convenience sample of 30 healthy individuals recruited from the staff and student population at the University of Huddersfield, UK. Plantarflexion/dorsiflexion range of ankle motion (ROAM) was measured in participants over 6 steps in every combination of typical, medical and no footwear; and multi-component bandages, compression hosiery and no garments. Results Controlling for age, gender and garments, the use of typical footwear was associated with a mean increase in ROAM of 2.54° at best estimate compared with barefoot; the use of medical footwear was associated with a mean decrease in ROAM of 1.12° at best estimate compared with barefoot. Controlling for age, gender and footwear, the use of bandaging was associated with a mean decrease in ROAM of 2.51° at best estimate compared with no garments. Controlling for age, gender and footwear, the use of hosiery was not associated with a significant change in ROAM compared with no garments. Conclusions Bandages appear to restrict ROAM more than hosiery when used in conjunction with a variety of footwear types
- …
