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handle the problem of determining symmetries and conservation laws in opti-
mal control, since they can perform differentiations, simplifications, and solve
differential equations, in a reliably way. We illustrate our approach with a
concrete optimal control problem borrowed from the literature.

2. Conservation Laws in Optimal Control

The optimal control problem consists to minimize an integral functional,

I[x(·),u(·)] =

∫ b

a

L(t,x(t),u(t))dt , (2.1)

subject to a control system described by ordinary differential equations,

ẋ(t) = ϕ(t,x(t),u(t)) , (2.2)

together with appropriate boundary conditions on the values of x(a) and
x(b). The Lagrangian L(·, ·, ·) is a real function, assumed to be continuously
differentiable in [a, b]×Rn×Rm; t ∈ R the independent variable; x : [a, b]→ Rn

the vector of state variables; u : [a, b] → Ω ⊆ Rm, Ω an open set, the vector
of controls, assumed to be piecewise continuous functions; and

ϕ : [a, b]× R
n
× R

m
→ R

n

the velocity vector, assumed to be a continuously differentiable vector func-
tion. We propose a computational method that permits to obtain conservation
laws for a given optimal control problem. Our method is based in the version
of Noether’s theorem established in [1]. Let us consider a one-parameter group
of C1 transformations hs : [a, b]× Rn × Rm × R× Rn → R× Rn × Rm × Rn,

hs(t,x,u, ψ0,ψ) =
(

hs

t (t,x, ψ0,ψ),hs

x(t,x, ψ0,ψ), hs

u(t,x,u, ψ0,ψ),

hs

ψ(t,x,u, ψ0,ψ)
)

, (2.3)

which reduces to the identity transformation when the parameter s vanishes:
h0

t
= t, h0

x = x, h0

u = u, h0

ψ = ψ. Associated with a one-parameter group

of transformations (2.3), we introduce the infinitesimal generators

T (t,x, ψ0,ψ) =
∂

∂s
hs

t

∣

∣

∣

∣

s=0

, X(t,x, ψ0,ψ) =
∂

∂s
hs

x

∣

∣

∣

∣

s=0

,

U(t,x,u, ψ0,ψ) =
∂

∂s
hs

u

∣

∣

∣

∣

s=0

, Ψ (t,x,u, ψ0,ψ) =
∂

∂s
hs

ψ

∣

∣

∣

∣

s=0

. (2.4)

Emmy Noether was the first who established a relation between the existence
of invariance transformations of the problem and the existence of conservation
laws [4]. Since the work pioneered by Noether, several definitions of invariance
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have been introduced for the problems of the calculus of variations (see e.g.
[4, 6]); and for the problems of optimal control (see e.g. [1, 5, 7]). All these
definitions are given with respect to a one-parameter group of transformations
(2.3). Although written in a different way one gets, in terms of the generators
(2.4), a necessary and sufficient condition of invariance that, essentially, coin-
cide to all those definitions. For this reason, here we define invariance directly
in terms of the generators (2.4).

Definition 1. ([1]) We say that an optimal control problem (2.1)-(2.2) is
invariant under (2.4) or, equivalently, that (2.4) is a symmetry of the problem,
if, and only if, condition

∂H

∂t
T +

∂H

∂x
·X +

∂H

∂u
·U +

∂H

∂ψ
·Ψ −ΨT

· ẋ−ψT
·
dX

dt
+H

dT

dt
= 0 (2.5)

holds, with H the Hamiltonian:

H(t,x,u, ψ0,ψ) = ψ0L(t,x,u) + ψT
· ϕ(t,x,u) . (2.6)

A symmetry is an intrinsic property of the optimal control problem (2.1)-(2.2)
(an intrinsic property of the corresponding Hamiltonian (2.6)), and does not
depend on the Pontryagin extremals. If one restricts attention to the quadru-
ples (x(·),u(·), ψ0,ψ(·)) that satisfy the Pontryagin maximum principle, one
arrives to Noether’s theorem.

Theorem 1. (Noether’s theorem) If (2.4) is a symmetry of problem (2.1)-
(2.2), then

ψ(t)T ·X(t,x(t), ψ0,ψ(t)) −H
(

t,x(t),u(t), ψ0,ψ(t)
)

× T
(

t,x(t), ψ0,ψ(t)
)

= const (2.7)

is a conservation law.

We remark that Noetherian conservation laws (2.7) only depend on the gen-
erators T and X of a symmetry (T,X,U ,Ψ ) (2.4).

3. Computation of Conservation Laws

The conservation laws we are looking for are obtained substituting in (2.7)
the components T and X of a symmetry of the problem. We develop the
Maple procedure Noether to do such calculations for us. The input to this
procedure is: the Lagrangian L and the velocity vector ϕ, that define the
optimal control problem (2.1)-(2.2) and the respective Hamiltonian H ; and
a symmetry, or a family of symmetries, obtained by means of our proce-
dure Symmetry. The output of Noether is the correspondent conservation
law (2.7). The reader can find the Maple files with the definitions of the
Symmetry and Noether procedures, that constitute our Maple package, at
http://www.mat.ua.pt/delfim/maple.htm.
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The non-trivial part resides in the determination of the symmetries of
the problem. Our algorithm for determining the infinitesimal generators (2.4)
is based on the necessary and sufficient condition of invariance (2.5). The
key to do the calculations consists in observing that when we substitute the
Hamiltonian H and its partial derivatives in the invariance identity (2.5),
then the condition become a polynomial in ẋ and ψ̇, and one can equal the
coefficients to zero. Let us see how it works in more detail.

Substituting H and its partial derivatives into (2.5), and expanding the
total derivatives, one can write equation (2.5) as a polynomial in the 2n deriva-
tives ẋ and ψ̇:

(

∂H

∂t
T +

∂H

∂x
·X +

∂H

∂u
·U +

∂H

∂ψ
· Ψ +H

∂T

∂t
−ψT

·
∂X

∂t

)

+

(

−ΨT +H
∂T

∂x
−ψT

·
∂X

∂x

)

· ẋ+

(

H
∂T

∂ψ
−ψT

·
∂X

∂ψ

)

· ψ̇ = 0 . (3.1)

The terms in (3.1) which involve derivatives with respect to vectors are ex-
panded in line-vectors or in matrices, depending, respectively, if the function
is a scalar or a vectorial one.

Given an optimal control problem, defined by a Lagrangian L and a control
system (2.2), we determine the infinitesimal generators T ,X, U and Ψ , which
define a symmetry for the problem, by the following method. Equation (3.1)
is a differential equation in the 2n+m+1 unknown functions T , X1, . . . , Xn,
U1, . . . , Um, Ψ1, . . . , and Ψn. This equation must hold for all ẋ1, . . . , ẋn, ψ̇1,
. . . , ψ̇n, and therefore all the coefficients of polynomial (3.1) must vanish.

The system of equations obtained from (3.1) is a system of 2n+ 1 partial
differential equations with 2n+m+1 unknown functions (so, in general, there
exists not a unique symmetry but a whole family of symmetries). Although a
system of partial differential equations, its resolution is possible because the
system is linear with respect to the unknown functions and their derivatives.
However, when dealing with optimal control problems with several state and
control variables, the number of calculations is big enough, and the help of
the computer is more than welcome. Our Maple procedure Symmetry does
all the job for us. Since system is homogeneous, we always have, as trivial
solution, (T,X,U ,Ψ ) = 0. When the output of Symmetry coincides with the
trivial solution, that means that the optimal control problem does not admit
a symmetry.

Summarizing: given an optimal control problem (2.1)-(2.2) we obtain con-
servation laws, in an automatic way, through two steps:

(i) with our procedure Symmetry we obtain the invariance symmetries of
the problem;

(ii) using the obtained symmetries as input to procedure Noether, based
on Theorem 1, we obtain the correspondent conservation laws.
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4. An Illustrative Example

In order to show the functionality and the usefulness of the developed routines,
we apply our Maple package to a concrete optimal control problem found in the
literature. The calling syntaxes of our procedures are Symmetry(L,ϕ, t, x, u)
and Noether(L,ϕ, t, x, u, S), with the respective inputs: Lagrangian L, veloc-
ity vector ϕ, name t of the independent variable, list of names x of the state
variables, list of names u of the control variables, and the set S of infinitesimal
generators for function Noether (the output of Symmetry).

Example. Let us consider the following problem:

∫

b

a

(

u1(t)
2 + u2(t)

2
)

dt −→ min,











ẋ1(t) = u1(t) cosx3(t),

ẋ2(t) = u1(t) sinx3(t),

ẋ3(t) = u2(t),

where the control system serves as model to the kinematics of a car [3, Ex-
ample 18, p. 750]. In this case the optimal control problem has three state
variables (n = 3) and two controls (m = 2). With Maple definitions

> L:=u[1]^2+u[2]^2; phi:=[u[1]*cos(x[3]),u[1]*sin(x[3]),u[2]];

L := u1

2 + u2

2

ϕ := [u1 cos (x3) , u1 sin (x3) , u2]

our procedure Symmetry determines the infinitesimal invariance generators of
the optimal control problem under consideration:

> Symmetry(L, phi, t, [x[1],x[2],x[3]], [u[1],u[2]]);

{T = C2, X1 = −C1x2 + C3, X2 = C1x1 + C4, X3 = C1,

U1 = 0, U2 = 0, Ψ1 = −C1ψ2, Ψ2 = C1ψ1, Ψ3 = 0}

(Ci, i = 1, . . . , 4, are arbitrary constants). The family of Conservation Laws
associated with the generators just obtained is easily obtained through our
procedure Noether (the sign of percentage (%) is an operator used in Maple
to represent the result of the previous command):

> Noether(L, phi, t, [x[1],x[2],x[3]], [u[1],u[2]], %);

(−C1x2(t) + C3)ψ1(t) + (C1x1(t) +C4)ψ2(t) +C1ψ3(t)−

„

ψ0

`

u1(t)
2 + u2(t)

2
´

+ u1(t) cos (x3(t))ψ1(t) + u1(t) sin (x3(t))ψ2(t) + u2(t)ψ3(t)

«

C2 = const

The obtained conservation law depends on four parameters. With the substi-
tutions C1 = 1 and C2 = C3 = C4 = 0 we obtain the conservation law
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> subs(C[1]=1,C[2]=0,C[3]=0,C[4]=0, %);

−x2(t)ψ1(t) + x1(t)ψ2(t) + ψ3(t) = const

which corresponds to the symmetry group of planar (orientation-preserving)
isometries given in [3, Example 18, p. 750].

We recall that any problem of the calculus of variations can always be
rewritten as an optimal control problem, so we can also apply our Maple
procedures Symmetry and Noether to obtain variational symmetries and
conservation laws in the classical context of the calculus of variations.
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