34 research outputs found

    Perceptions of effectiveness of celebrity endorsed advertisements among Egyptian consumers

    Get PDF
    The main purpose of this study is to investigate consumer attitudes regarding celebrity endorsement in different types of media in Egypt, and presents guidance to advertising specialists and creators to enhance the value of celebrity-based advertising. The study was based on an empirical research approach, which used a convenience sample of 355 respondents, drawn from different age groups, educational level, income level and residential areas. The data was analyzed by a variety of statistical techniques, such as Descriptive analysis, Frequency analysis, t-Test, and ANOVA. The main findings revealed that Egyptians respondents were in general interested in celebrity endorsement advertisements, as the majority of them admitted its attractiveness; however, they did not find it enough convincing in terms of purchasing behavior. The study recommended reconsidering the use and choice of celebrities in advertising within the context of the Egyptian culture. The study also recommends further research to investigate this issue in more depth in Egypt. The study suggested some other recommendations in light of the findings

    Micellar high performance liquid chromatographic determination of tinidazole in combination with ciprofloxacin or norfloxacin in bulk, pharmaceutical dosage forms and in spiked human plasma

    Get PDF
    A micellar liquid chromatographic method was developed for determination of tinidazole in bulk, dosage forms and human plasma using intersil cyano column and a mobile phase of 0.1 M sodium dodecyl sulphate, 20% 1-propanol, 0.3% triethylamine in 0.02 M orthophosphoric acid:water (60:40, v:v) (pH = 4). The U.V. detection was achieved at 311 nm. Various chromatographic parameters were investigated to select the optimum conditions for the separation, e.g. types of columns, pH of mobile phase, concentration of sodium dodecyl sulphate, 1-propanol, triethylamine, etc. The method was linear over the concentration range 40-200 µg/mL with regression coefficient 0.999. The result obtained by the proposed method was compared with that obtained by the reference HPLC technique. Furthermore, the proposed method was successfully applied as stability-indicating method for determination of tinidazole under different stressed conditions. The method showed good selectivity, repeatability, linearity and sensitivity according to the evaluation of the validation parameters

    Detection and quantification of warfarin in pharmaceutical dosage form and in spiked human plasma using surface enhanced Raman scattering

    Get PDF
    Analytical approaches for the quantitation of warfarin in plasma are high in demand. In this study, a novel surface enhanced Raman scattering (SERS) technique for the quantification of the widely used anticoagulant warfarin sodium in pharmaceutical dosage form and in spiked human plasma was developed. The colloidal-based SERS measurements were carefully optimized considering the laser wavelength, the type of metal nanoparticles, their surface functionalization and concentration as well as the time required for warfarin to associate with the metal surface. Poly(diallyldimethylammonium chloride) coated silver nanoparticles (PDDA-AgNPs) were established as a substrate which greatly enhanced the weak warfarin Raman signal with high reproducibility. The limit of detection was calculated in both water and human plasma to be 0.56 nM (0.17 ngmL-1) and 0.25 nM (0.08 ngmL-1) respectively, with a high degree of accuracy and reproducibility. The proposed method is simple, economical, and easily applied for routine application requiring only small plasma samples and also could be potentially useful for pharmacokinetic research on warfarin

    Stability-indicating micellar enhanced spectro-fluorometric determination of Daclatasvir in its tablet and spiked human plasma

    Get PDF
    A fast, simple and sensitive micellar enhanced spectrofluorimetric method is performed for the determination of Daclatasvir dihydrochloride (DAC) in its pharmaceutical dosage form and in spiked human plasma. The fluorescence intensity (FI) was measured at 367 nm after excitation at 300 nm. In aqueous solution, the FI of DAC was greatly enhanced by >110% in the presence of sodium dodecyl sulphate (SDS). The detection method was linear over the range of 12.93 to 161.60 ng/mL, with a limit of detection of 1.75 ng/mL. The proposed method was successfully applied to the determination of DAC in its pharmaceutical dosage form and the mean % recovery of DAC in spiked human plasma was 95.42 ± 2.52. The developed methodology was also extended to stress studies of DAC after exposure to different forced degradation conditions including acidic, alkaline, photolytic, thermal and oxidative environments

    Optimized polydopamine coating and DNA conjugation onto gold nanorods for single nanoparticle bioaffinity measurements

    Get PDF
    Gold nanorods (NRs) have attracted a great deal of interest for a variety of biomedical and sensing applications. However, developing robust methods for biofunctionalizing NRs has continued to be challenging, especially for NR–DNA conjugates. This is due to the presence of cetyltrimethylammonium bromide (CTAB), which plays an essential role in controlling the anisotropic particle growth. In this article, we systematically explore the growth of a polydopamine (PDA) layer on a range of NR surfaces, comparing different polyelectrolyte and alkanethiol coatings as well as direct CTAB displacement. This revealed that the PDA layer thickness and growth rate is strongly dependent on the underlying nanorod functionalization chemistry and allowed us to establish a preferred route for the creation of stable, non-aggregated suspensions of PDA-coated NRs. The utility of this platform was then demonstrated by self-assembling packed monolayers of single-stranded DNA on the outer surface. Both the surface attachment and bioactivity of the resulting NR–DNA conjugates was then demonstrated by performing bulk solution and single nanoparticle imaging fluorescence measurements

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Diffusion weighted (DW) MRI role in characterization of breast lesions using absolute and normalized ADC values

    No full text
    Introduction: Diffusion-weighted imaging (DWI) is a modality that depicts the diffusivity of water molecules. This technique has the potential to play an adjunct role to conventional and dynamic MRI in the assessment of breast tissue. Aim of work: To evaluate the role of DWI with absolute and normalized ADC value measurements in characterization of breast lesions. Patients and methods: Seventy patients with mass or non mass lesions on mammography or breast ultrasound were included in this study. DWI were added to routine MR study with calculation of ADC absolute value and normalized ratio for lesions before biopsy of their breast lesions and results were correlated with histopathology. Results: Thirty out of 70 detected lesions were malignant. Malignant lesions showed lower ADC values and lower ratio of normalized ADC than benign lesions. The ROC study revealed that a cutoff ADC value of 1.1 × 10−3 mm2/s and normalized ADC ratio of 0.9 had high sensitivity of 89.75%, and 92.2% with specificity of 94.4% and 94.4% respectively in the differentiation between benign and malignant breast lesions. Conclusion: DWI is a short unenhanced scan that can be potential adjunct to conventional breast MRI and can be used to accurately characterize breast lesions with high sensitivity and specificity Suggested
    corecore