21 research outputs found

    Middle to Upper Jurassic bivalves of the south-western Morondava Basin (Madagascar)

    Get PDF

    The Giant Pacific Oyster (Crassostrea gigas) as a modern analog for fossil ostreoids: Isotopic (Ca, O, C) and elemental (Mg/Ca, Sr/Ca, Mn/Ca) proxies

    Get PDF
    Modern analogs are an essential part of palaeoclimate studies, because they provide the basis for the understanding of geochemical signatures of fossils. Ostreoids are common in many sedimentary sequences and because of their fast growth, high temporal resolution sampling of past seasonal variability is possible. Here, two shell structures of modern Giant Pacific Oysters (Crassostrea gigas), the chalky substance and foliate layers, have been sampled for trace element distributions (Mg, Sr, Mn) and stable isotope variability (C, O, Ca). Oxygen isotopes exhibit a clear seasonal signature. Mean carbon isotope values of different oysters agree within 0.1‰, but ontogenic variability is complicated by shell growth patterns and potential small vital effects. The calcium isotope ratios are found to be constant throughout ontogeny within analytical precision at a value of ÎŽ44/40Ca = 0.68 ± 0.16‰ (2 sd) SRM–915a which is consistent with other bivalve species. Calcium isotope ratios in oyster shell material might thus be a possible proxy for palaeo seawater calcium isotope ratios. Element/Ca ratios are significantly higher in the chalky substance than in the foliate layers and especially high Sr/Ca and Mn/Ca ratios are observed for the first growth season of the oysters. Mg/Ca ratios in the chalky substance show a negative correlation with ÎŽ18O values, compatible with a temperature dependence, whereas this correlation is absent in the foliate layers. Seasonal changes of Sr/Ca are controlled by metabolic processes, whereas for Mn/Ca an additional environmental control is evident

    Methane seepage in a Cretaceous greenhouse world recorded by an unusual carbonate deposit from the Tarfaya Basin, Morocco

    Get PDF
    During the Cretaceous major episodes of oceanic anoxic conditions triggered large scale deposition of marine black shales rich in organic carbon. Several oceanic anoxic events (OAEs) have been documented including the Cenomanian to Turonian OAE 2, which is among the best studied examples to date. This study reports on a large limestone body that occurs within a black shale succession exposed in a coastal section of the Tarfaya Basin, Morocco. The black shales were deposited in the aftermath of OAE 2 in a shallow continental sea. To decipher the mode and causes of carbonate formation in black shales, a combination of element geochemistry, palaeontology, thin section petrography, carbon and oxygen stable isotope geochemistry and lipid biomarkers are used. The ÂčÂłC-depleted biphytanic diacids reveal that the carbonate deposit resulted, at least in part, from microbially-mediated anaerobic oxidation of methane in the shallow subseafloor at a hydrocarbon seep. The lowest obtained ÎŽÂčÂłCcarbonate values of −23.5‰ are not low enough to exclude other carbon sources than methane apart from admixed marine carbonate, indicating a potential contribution from in situ remineralization of organic matter contained in the black shales. Nannofossil and trace metal inventories of the black shales and the macrofaunal assemblage of the carbonate body reveal that environmental conditions became less reducing during the deposition of the background shales that enclose the carbonate body, but the palaeoenvironment was overall mostly characterized by high productivity and episodically euxinic bottom waters. This study reconstructs the evolution of a hydrocarbon seep that was situated within a shallow continental sea in the aftermath of OAE 2, and sheds light on how these environmental factors influenced carbonate formation and the ecology at the seep site

    ï»żJurassic bivalves from the Spiti area of the Himalayas, northern India

    No full text
    The present study describes and illustrates six bivalve taxa from the Early Bathonian to Early Callovian Ferruginous Oolite Formation and 24 taxa from the Callovian to basal-most Cretaceous Spiti Shale Formation of the Spiti and Zanskar areas in the Indian Himalayas. The Spiti Shale Formation contains a low-diversity bivalve fauna that is concentrated in few horizons, particularly in the lower member of the formation. With few exceptions, the bivalves are poorly preserved. Bivalve taxa recorded by earlier studies are revised wherever possible. Several of the taxa, most of which are from mid- to outer shelf environments, are characteristic of the south-eastern margin of the Neotethys, but some are also closely related to forms occurring in Kachchh, a rift basin situated at the western margin of the Indian Craton
    corecore