585 research outputs found

    Arsenic removal by magnetite-loaded amino modified nano/microcellulose adsorbents: Effect of functionalization and media size

    Get PDF
    Comparative adsorption study related to benefits of parent media size, i.e. microfibrillated cellulose (MC) versus nanocellulose (NC) support, for the preparation of magnetite (MG) based high performance adsorbent for arsenic removal was conducted. Precipitation of MG on amino terminal branched organic structure, L, either linked by maleic acid residue on NC surface (NC-MA/L) or linked by oxalyl bridge on MC surface (MC-O/L) produced NC-MA/L-MG and MC-O/L-MG adsorbents, respectively. Precipitation of nanosized MG on amino functionalized NC-MA/L and MC-O/L, performed according to optimized procedure, contributed to improved textural properties and adsorptive/kinetic performances of novel adsorbents. Adsorption capacity of arsenate, As(V), was in favor of NC-MA/L-MG (85.3 versus 18.5 mg g(-1)) while MC-O/L-MG exhibited faster kinetics (0.541 versus 0.189 g mg(-1) min(-1)). Lower capacity of arsenite, As(III), removal, 68.3 mg g(-1) for NC-MA/L-MG and 17.8 mg g(-1) for MC-O/L-MG, were obtained. Calculated activation energies, 13.28 and 10.87 kJ mol(-1) for NC-MA/L-MG and MC-O/L-MG with respect to As(V), respectively, suggest, in accordance with results of Weber-Morris fitting, that internal mass transfer controls adsorption process. Model free adsorption kinetics confirmed beneficial uses of MC-O/L-MG due to low activation energy dependence on the extent of adsorption

    ソクドロンテキ トクセイ ノ スグレタ ヒサン ナラビニ リンサン イオン ニ センタクテキ ナ キュウチャクザイ ノ カイハツ

    Get PDF
    This study has shown that FVA, Zr(IV) loaded phosphonate/sulfonate binfunctional fiber and PAA are highly effective new adsorbents for arsenate and phosphate removal with high kinetic performances

    ソクドロンテキ トクセイ ノ スグレタ ヒサン ナラビニ リンサン イオン ニ センタクテキ ナ キュウチャクザイ ノ カイハツ

    Get PDF
    This study has shown that FVA, Zr(IV) loaded phosphonate/sulfonate binfunctional fiber and PAA are highly effective new adsorbents for arsenate andphosphate removal with high kinetic performances

    Resource Inventory and Conservation Guidelines for a Historical Site

    Get PDF
    A Historical site or heritage site is a location that has been protected by-laws or other preservation policies due to their cultural heritage values The whole site of any area or a part of the historical site can be protected due to their past and present heritage value This paper attempts to do an inventory survey and to provide some policy guidelines that keep harmony along with the current heritage preservation policy Direct site inventory and secondary data collection have been practiced as the research methodology The study shows that the invented site Hawakhana Puthia Rajbari complex has a vast scope for the development of an immense historical site of the Rajshahi District Besides that the structure provides a great sense of developing this place as a perfect place to spend our leisure tim

    Nanostructured potassium copper hexacyanoferrate-cellulose hydrogel for selective and rapid cesium adsorption

    Get PDF
    Potassium copper hexacyanoferrate (KCuHCF) was synthesized and immobilized in a cellulose-based hydrogel made of carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC) for the adsorption of cesium ions in aqueous solutions. The immobilization with the cellulose-based hydrogel facilitated the dispersion of nano-sized KCuHCF particles, showing the unprecedented adsorption capacity of the composite. In Cs+ removal experiments, KCuHCF-cellulose hydrogel composites (HCF-gels) exhibited exceptional Cs+ adsorption capacities (2.06-2.32 mmol g-1) which was attributed to the presence of ion-exchangeable sites (COO-Na+) in the cellulose hydrogel. The HCF-gels also exhibited a rapid Cs+ removal (90.1% removal for 0.15 mmol L-1 of Cs+ in 1 h) with the uptake reaction kinetics expressed by a pseudo-second order kinetics model. Notably, the HCF-gels could adsorb Cs+ selectively (>90%) in seawater containing 0.11 mmol L-1 Cs+. Such specificity with fast kinetics is due to the high ion accessibility from the inherent nature of hydrogels and the highly dispersed KCuHCF nanoparticles in the composites

    A high-strength polyvinyl alcohol hydrogel membrane crosslinked by sulfosuccinic acid for strontium removal via filtration

    Get PDF
    This study considered the removal of strontium (Sr2+) from contaminated water using a filtration membrane that exhibits good mechanical strength, high adsorption capacity, and the ability to be regenerated and reused. Polyvinyl alcohol hydrogel membranes were prepared by crosslinking with sulfosuccinic acid in different ratios (2.5, 5, 10 and 20 mol% relative to the PVA monomer), named as PSA2.5, PSA5, PSA10 and PSA20. All PSA membranes showed good Sr2+ adsorption over a wide pH range (pH 2–12), and maintained rapid removal kinetics (> 95% Sr2+ recovered from 5 ppm Sr2+ within 4 h). Furthermore, the Sr2+ adsorption capacities of PSA2.5, PSA5, PSA10 and PSA20 were 27.6, 45.8, 56.3, and 55.3 mg/g, respectively, based on the Langmuir adsorption isotherm. From the four PSA membranes, PSA5 was selected for further filtration studies due to its favorable mechanical and adsorption properties. When filtering 5 ppm Sr2+ and 250 ppm Ca2+, corresponding to the Ca2+ concentration in the wastewater at the Fukushima nuclear plant, 87% Sr2+ was removed using the PSA5 membrane following multiple cycles of regeneration and reuse. Moreover, the tensile strength of the PSA5 membrane remained high (> 100 MPa) following five consecutive uses

    Assessment of clean H2 energy production from water using novel silicon photocatalyst

    Get PDF
    Nanosheets of silicon have attracted a great deal of attention due to its tunable optical and electronic properties. However, the development of facile and easily scalable synthesis process has remained a great contest. Endeavor has been made in this research to find a waste inferred effective photocatalyst to deliver hydrogen (H2) through visible light responsive water splitting. One-pot solid phase reaction was applied to synthesis catalyst and adopted ultrathin structure. The photocatalytic efficiency of catalyst was examined by XRD, XPS, and UV–VIS absorption spectra, PL, FESEM, HRTEM and EDX. The HRTEM and FESEM images revealed the interconnected nanosheets with Si having the average thickness of 5 nm and their band gaps were 2.3–2.5 eV corresponding to the absorption of visible light range. The H2 production rate on photocatalyst was originated to 3200 μmol h−1 without utilizing any conciliatory electron givers, voltage or pH alteration, which beats the Pt, Ru, Rh, Pd and Au stacked photocatalyst ever detailed up until this point. The significant increase in photocatalytic activity could be the fast charge migration and separation from the silicon-hydrogen and silicon-hydroxyl bonds on Si surface and facilitation of charge separation could results from the multiple reflections of visible light on ultrathin nanosheets. It has been confirmed that the electron/hole recombination rate in ultrathin nanosheets of Si declined due to the oxidation of Si surface. It would be presumed that the approach of surface chemistry of silicon could not be limited towards the photocatalytic water splitting and could be applicable to remedy water pollution

    Ultrathin assembles of Porous Array for enhanced H2 evolution

    Get PDF
    Since the complexity of photocatalyst synthesis process and high cost of noble cocatalyst leftovers a major hurdle to producing hydrogen (H2) from water, a noble metal-free Ni-Si/MgO photocatalyst was realized for the first time to generate H2 effectively under illumination with visible light. The catalyst was produced by means of simple one-pot solid reaction using self-designed metal reactor. The physiochemical properties of photocatalyst were identified by XRD, FESEM, HRTEM, EDX, UV-visible, XPS, GC and PL. The photocatalytic activities of Ni-Si/MgO photocatalyst at different nickel concentrations were evaluated without adjusting pH, applied voltage, sacrificial agent or electron donor. The ultrathin-nanosheet with hierarchically porous structure of catalyst was found to exhibit higher photocatalytic H2 production than hexagonal nanorods structured catalyst, which suggests that the randomly branched nanosheets are more active surface to increase the light-harvesting efficiency due to its short electron diffusion path. The catalyst exhibited remarkable performance reaching up to 714 µmolh⁻¹ which is higher among the predominant semiconductor catalyst. The results demonstrated that the photocatalytic reaction irradiated under visible light illumination through the production of hydrogen and hydroxyl radicals on metals. The outcome indicates an important step forward one-pot facile approach to prepare noble ultrathin photocatalyst for hydrogen production from water

    The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater

    Get PDF
    The presence of heavy metals in water bodies is linked to the increasing number of industries and populations. This has serious consequences for the quality of human health and the environment. In accordance with this issue, water and wastewater treatment technologies including ion exchange, chemical extraction, and hydrolysis should be conducted as a first water purification stage. However, the sequestration of these toxic substances tends to be expensive, especially for large scale treatment methods that require tedious control and have limited efficiency. Therefore, adsorption methods using adsorbents derived from biomass represent a promising alternative due to their great efficiency and abundance. Algal and seaweed biomass has appeared as a sustainable solution for environmentally friendly adsorbent production. This review further discusses recent developments in the use of algal and seaweed biomass as potential sorbent for heavy metal bioremediation. In addition, relevant aspects like metal toxicity, adsorption mechanism, and parameters affecting the completion of adsorption process are also highlighted. Overall, the critical conclusion drawn is that algae and seaweed biomass can be used to sustainably eliminate heavy metals from wastewater
    corecore