56 research outputs found

    Upper Bounds on the Neutrino-Nucleon Inelastic Cross Section

    Full text link
    Extraterrestrial neutrinos can initiate deeply developing air showers, and those that traverse the atmosphere unscathed may produce cascades in the ice or water. Up to now, no such events have been observed. This can be translated into upper limits on the diffuse neutrino flux. On the other hand, the observation of cosmic rays with primary energies > 10^{10} GeV suggests that there is a guaranteed flux of cosmogenic neutrinos, arising from the decay of charged pions (and their muon daughters) produced in proton interactions with the cosmic microwave background. In this work, armed with these cosmogenic neutrinos and the increased exposure of neutrino telescopes we bring up-to-date model-independent upper bounds on the neutrino-nucleon inelastic cross section. Uncertainties in the cosmogenic neutrino flux are discussed and taken into account in our analysis. The prospects for improving these bounds with the Pierre Auger Observatory are also estimated. The unprecedented statistics to be collected by this experiment in 6 yr of operation will probe the neutrino-nucleon inelastic cross section at the level of Standard Model predictions.Comment: To be published in JCA

    The Particle Physics Reach of High-Energy Neutrino Astronomy

    Full text link
    We discuss the prospects for high-energy neutrino astronomy to study particle physics in the energy regime comparable to and beyond that obtainable at the current and planned colliders. We describe the various signatures of high-energy cosmic neutrinos expected in both neutrino telescopes and air shower experiments and discuss these measurements within the context of theoretical models with a quantum gravity or string scale near a TeV, supersymmetry and scenarios with interactions induced by electroweak instantons. We attempt to access the particle physics reach of these experiments.Comment: Mini-review article for New Journal of Physics, "Focus on Neutrinos" issue. 27 pages, 11 figure

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    Anisotropy studies around the galactic centre at EeV energies with the Auger Observatory

    Get PDF
    Data from the Pierre Auger Observatory are analyzed to search for anisotropies near the direction of the Galactic Centre at EeV energies. The exposure of the surface array in this part of the sky is already significantly larger than that of the fore-runner experiments. Our results do not support previous findings of localized excesses in the AGASA and SUGAR data. We set an upper bound on a point-like flux of cosmic rays arriving from the Galactic Centre which excludes several scenarios predicting sources of EeV neutrons from Sagittarius AA. Also the events detected simultaneously by the surface and fluorescence detectors (the `hybrid' data set), which have better pointing accuracy but are less numerous than those of the surface array alone, do not show any significant localized excess from this direction.Comment: Matches published versio

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    Trigger and Aperture of the Surface Detector Array of the Pierre Auger Observatory

    Get PDF
    The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3×10183\times 10^{18} eV, for all zenith angles between 0^\circ and 60^\circ, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.Comment: 29 pages, 12 figure
    corecore