620 research outputs found
Demonstration of the Lateral AC Skin Effect Using a Pickup Coil
We present a simple demonstration of the skin effect by observing the current distribution in a wide rectangular strip conductor driven at frequencies in the 0.25â5âkHz range. We measure the amplitude and phase of the current distribution as a function of the transverse position and find that they agree well with numerical simulations: The current hugs the edges of the strip conductor with a significant variation in phase across the width. The experimental setup is simple, uses standard undergraduate physics instructional laboratory equipment, and is easy to implement as a short in-class demonstration. Our study is motivated by modeling ac magnetic near fields in the vicinity of a rectangular trace on an atom chip
Guideline for the optimal use of blood cultures
The incidence of sepsis is increasing globally, with high morbidity and mortality. Prompt, accurate detection of bacteraemia and fungaemia is imperative for improving patient care, yet health care professionals lack training in correct blood culture techniques. These guidelines discuss the clinical importance of blood cultures, the indications for their use and the correct technique for optimal yield of pathogenic micro-organisms that cause sepsis
Scattering By an Oscillating Barrier: Quantum, Classical, and Semiclassical Comparison
We present a detailed study of scattering by an amplitude-modulated potential barrier using three distinct physical frameworks: quantum, classical, and semiclassical. Classical physics gives bounds on the energy and momentum of the scattered particle, while also providing the foundation for semiclassical theory. We use the semiclassical approach to selectively add quantum-mechanical effects such as interference and diffraction. We find good agreement between the quantum and semiclassical momentum distributions. Our methods and results can be used to understand quantum and classical aspects of transport mechanisms involving time-varying potentials, such as quantum pumping
Variational data assimilation for the initial-value dynamo problem
The secular variation of the geomagnetic field as observed at the Earth's surface results from the complex magnetohydrodynamics taking place in the fluid core of the Earth. One way to analyze this system is to use the data in concert with an underlying dynamical model of the system through the technique of variational data assimilation, in much the same way as is employed in meteorology and oceanography. The aim is to discover an optimal initial condition that leads to a trajectory of the system in agreement with observations. Taking the Earth's core to be an electrically conducting fluid sphere in which convection takes place, we develop the continuous adjoint forms of the magnetohydrodynamic equations that govern the dynamical system together with the corresponding numerical algorithms appropriate for a fully spectral method. These adjoint equations enable a computationally fast iterative improvement of the initial condition that determines the system evolution. The initial condition depends on the three dimensional form of quantities such as the magnetic field in the entire sphere. For the magnetic field, conservation of the divergence-free condition for the adjoint magnetic field requires the introduction of an adjoint pressure term satisfying a zero boundary condition. We thus find that solving the forward and adjoint dynamo system requires different numerical algorithms. In this paper, an efficient algorithm for numerically solving this problem is developed and tested for two illustrative problems in a whole sphere: one is a kinematic problem with prescribed velocity field, and the second is associated with the Hall-effect dynamo, exhibiting considerable nonlinearity. The algorithm exhibits reliable numerical accuracy and stability. Using both the analytical and the numerical techniques of this paper, the adjoint dynamo system can be solved directly with the same order of computational complexity as that required to solve the forward problem. These numerical techniques form a foundation for ultimate application to observations of the geomagnetic field over the time scale of centuries
Towards integration of environmental and health impact assessments for wild capture fishing and farmed fish with particular reference to public health and occupational health dimensions
The paper offers a review and commentary, with particular reference to the production of fish from wild capture fisheries and aquaculture, on neglected aspects of health impact assessments which are viewed by a range of international and national health bodies and development agencies as valuable and necessary project tools. Assessments sometimes include environmental health impact assessments but rarely include specific occupational health and safety impact assessments especially integrated into a wider public health assessment. This is in contrast to the extensive application of environmental impact assessments to fishing and the comparatively large body of research now generated on the public health effects of eating fish. The value of expanding and applying the broader assessments would be considerable because in 2004 the United Nations Food and Agriculture Organization reports there were 41,408,000 people in the total âfishingâ sector including 11,289,000 in aquaculture. The paper explores some of the complex interactions that occur with regard to fishing activities and proposes the wider adoption of health impact assessment tools in these neglected sectors through an integrated public health impact assessment tool
Collision analysis for an UAV
International audienceThe Sense and Avoid capacity of Unmanned Aerial Vehicles (UAV) is one of the key elements to open the access to airspace for UAVs. In order to replace a pilot's See and Avoid capacity such a system has to be certified "as safe as a human pilot on-board". The problem is to prove that an unmanned aircraft equipped with a S and A system can comply with the actual air transportation regulations. This paper aims to provide mathematical and numerical tools to link together the safety objectives and sensors specifications. Our approach starts with the natural idea of a specified "safety volume" around the aircraft: the safety objective is to guarantee that no other aircraft can penetrate this volume. We use a general reachability and viability concepts to define nested sets which are meaningful to allocate sensor performances and manoeuvring capabilities necessary to protect the safety volume. Using the general framework of HJB equations for the optimal control and differential games, we give a rigorous mathematical characterization of these sets. Our approach allows also to take into account some uncertainties in the measures of the parameters of the incoming traffic. We also provide numerical tools to compute the defined sets, so that the technical specifications of a S and A system can be derived in accordance with a small set of intuitive parameters. We consider several dynamical models corresponding to the different choices of maneuvers (lateral, longitudinal and mixed). Our numerical simulations show clearly that the nature of used maneuvers is an important factor in the specifications of sensor's performances
Conservation of core gene expression in vertebrate tissues
Abstract
Background
Vertebrates share the same general body plan and organs, possess related sets of genes, and rely on similar physiological mechanisms, yet show great diversity in morphology, habitat and behavior. Alteration of gene regulation is thought to be a major mechanism in phenotypic variation and evolution, but relatively little is known about the broad patterns of conservation in gene expression in non-mammalian vertebrates.
Results
We measured expression of all known and predicted genes across twenty tissues in chicken, frog and pufferfish. By combining the results with human and mouse data and considering only ten common tissues, we have found evidence of conserved expression for more than a third of unique orthologous genes. We find that, on average, transcription factor gene expression is neither more nor less conserved than that of other genes. Strikingly, conservation of expression correlates poorly with the amount of conserved nonexonic sequence, even using a sequence alignment technique that accounts for non-collinearity in conserved elements. Many genes show conserved human/fish expression despite having almost no nonexonic conserved primary sequence.
Conclusions
There are clearly strong evolutionary constraints on tissue-specific gene expression. A major challenge will be to understand the precise mechanisms by which many gene expression patterns remain similar despite extensive cis-regulatory restructuring
Intra-fraction motion of pelvic oligometastases and feasibility of PTV margin reduction using MRI guided adaptive radiotherapy
PurposeThis study assesses the impact of intra-fraction motion and PTV margin size on target coverage for patients undergoing radiation treatment of pelvic oligometastases. Dosimetric sparing of the bowel as a function of the PTV margin is also evaluated.Materials and methodsSeven patients with pelvic oligometastases previously treated on our MR-linac (35 Gy in 5 fractions) were included in this study. Retrospective adaptive plans were created for each fraction on the daily MRI datasets using PTV margins of 5 mm, 3 mm, and 2 mm. Dosimetric constraint violations and GTV coverage were measured as a function of PTV margin size. The impact of intra-fraction motion on GTV coverage was assessed by tracking the GTV position on the cine MR images acquired during treatment delivery and creating an intra-fraction dose distribution for each IMRT beam. The intra-fraction dose was accumulated for each fraction to determine the total dose delivered to the target for each PTV size.ResultsAll OAR constraints were achieved in 85.7%, 94.3%, and 100.0% of fractions when using 5 mm, 3 mm, and 2 mm PTV margins while scaling to 95% PTV coverage. Compared to plans with a 5 mm PTV margin, there was a 27.4 ± 12.3% (4.0 ± 2.2 Gy) and an 18.5 ± 7.3% (2.7 ± 1.4 Gy) reduction in the bowel D0.5cc dose for 2 mm and 3 mm PTV margins, respectively. The target dose (GTV V35 Gy) was on average 100.0 ± 0.1% (99.6 â 100%), 99.6 ± 1.0% (97.2 â 100%), and 99.0 ± 1.4% (95.0 â 100%), among all fractions for the 5 mm, 3 mm, and 2 mm PTV margins on the adaptive plans when accounting for intra-fraction motion, respectively.ConclusionA 2 mm PTV margin achieved a minimum of 95% GTV coverage while reducing the dose to the bowel for all patients
- âŠ