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Intra-fraction motion of pelvic
oligometastases and feasibility of
PTV margin reduction using MRI
guided adaptive radiotherapy

Jeffrey Snyder*, Blake Smith, Joel St-Aubin, David Dunkerley,
Andrew Shepard, Joseph Caster and Daniel Hyer

Department of Radiation Oncology, University of Iowa Hospitals and Clinics,
Iowa City, IA, United States
Purpose: This study assesses the impact of intra-fraction motion and PTVmargin

size on target coverage for patients undergoing radiation treatment of pelvic

oligometastases. Dosimetric sparing of the bowel as a function of the PTVmargin

is also evaluated.

Materials and methods: Seven patients with pelvic oligometastases previously

treated on our MR-linac (35 Gy in 5 fractions) were included in this study.

Retrospective adaptive plans were created for each fraction on the daily MRI

datasets using PTV margins of 5 mm, 3 mm, and 2 mm. Dosimetric constraint

violations and GTV coverage were measured as a function of PTV margin size.

The impact of intra-fraction motion on GTV coverage was assessed by tracking

the GTV position on the cine MR images acquired during treatment delivery and

creating an intra-fraction dose distribution for each IMRT beam. The intra-

fraction dose was accumulated for each fraction to determine the total dose

delivered to the target for each PTV size.

Results: All OAR constraintswere achieved in 85.7%, 94.3%, and 100.0%of fractions

when using 5 mm, 3 mm, and 2 mm PTV margins while scaling to 95% PTV

coverage. Compared to plans with a 5 mm PTV margin, there was a 27.4 ± 12.3%

(4.0 ± 2.2 Gy) and an 18.5 ± 7.3% (2.7 ± 1.4 Gy) reduction in the bowel D0.5cc dose

for 2 mm and 3mmPTVmargins, respectively. The target dose (GTV V35 Gy) was on

average 100.0 ± 0.1% (99.6 – 100%), 99.6 ± 1.0% (97.2 – 100%), and 99.0 ± 1.4%

(95.0 – 100%), among all fractions for the 5 mm, 3 mm, and 2 mm PTVmargins on

the adaptive plans when accounting for intra-fraction motion, respectively.

Conclusion: A 2 mm PTV margin achieved a minimum of 95% GTV coverage

while reducing the dose to the bowel for all patients.

KEYWORDS

MR-linac, tumor tracking, intra-fraction, adaptive radiotherapy (ART), IMRT (intensity
modulated radiation therapy), dose accumulation
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1 Introduction

Oligometastatic disease refers to patients with five or fewer

lesions and is considered an intermediate disease state between

localized and widely metastatic cancer (1, 2). Due to its high

precision and steep dose gradients, stereotactic body radiotherapy

(SBRT) has proven to be an effective method in treating

oligometastatic lymph nodes (3, 4). In these cases, SBRT can

improve a patient’s quality of life by delaying or eliminating the

need for systemic therapies such as chemotherapy (5). The addition

of SBRT in the treatment of oligometastatic disease has also been

shown to improve patient overall survival versus standard of care

palliative treatment alone (6).

Lymph node SBRT is often delivered in re-irradiation settings

where reducing dose to organs at risk (OARs) is critical to minimize

potential toxicities. It has been estimated that 40% of patients who

receive radiation for a pelvic malignancy will develop a locoregional

recurrence in the irradiated field (7). Furthermore, up to 30% of

patients who receive SBRT to an oligometastatic lymph node may

develop an out offield recurrence in another lymph node potentially

requiring re-irradiation (8). These statistics make MRI guided

adaptive radiotherapy (MRIgRT) an appealing treatment modality

in both the initial and re-irradiation settings for pelvic lymph node

oligometastases. MRIgRT provides superior soft tissue contrast and

the ability to create daily adaptive plans which account for inter-

fraction changes of the target and adjacent OARs (9–11).

Additionally, MRIgRT enables noninvasive and nonionizing

intra-fraction motion monitoring using either 3D volumetric or

2D cine MR imaging (12, 13). Literature comparing MRIgRT and

cone beam computed tomography (CBCT) has shown that fewer

OAR constraints were violated by utilizing MRIgRT daily adaptive

replanning (14, 15). However, a recent study by Werensteijn-

Honingh et al. found that if equivalent PTV margins were used,

CBCT provided better bowel sparing as compared to MRIgRT (16).

This was primarily due to increased intra-fraction motion in

MRIgRT due to longer treatment session times as compared to

CBCT treatments on conventional linear accelerators. This

highlights the desirability of PTV margin reduction in MRIgRT.

Standard PTV margins for oligometastatic SBRT have been well

established for conventional linear accelerators. These margins

primarily range from 3 - 5 mm but can extend up to 8mm

depending on visibility on CBCT imaging (17–21). With superior

soft tissue contrast and the ability to correct for anatomical changes,

MRIgRT may enable further margin reduction. However, current

literature on MRIgRT SBRT of lymph node oligometastases

continue to report using a similar 3 – 5 mm PTV margin (15,

22–26). This is, in part, due to limited published work reporting

intra-fraction lymph node motion during extended treatment

sessions. Studies that have reported intra-fraction motion of

lymph node oligometastases have primarily used pre- and post-

3D MRI images, which do not give the position of the target

throughout the treatment delivery (21, 27, 28).

Recently, the use of 2D cine MRI imaging coupled with target

tracking has been used to determine the required PTV margins and

reconstruct the fractional delivered dose to the target for prostate
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and seminal vesicle treatments (29–31). However, similar studies

for pelvic oligometastatic disease are lacking. The aim of this work is

twofold: to evaluate the dose delivered to the gross tumor volume

(GTV) as a function of PTV margin during MRIgRT of pelvic

oligometastases using cine MRI imaging to account for intra-

fraction motion; and to compare the dose received by the bowel

as a function of PTV margin.
2 Materials and methods

2.1 Patient selection and clinical workflow

Seven patients with a single pelvic lymph node oligometastasis

previously treated using SBRT on an Elekta Unity (Elekta AB,

Stockholm Sweden) were enrolled in this study. This research was

reviewed by our departmental institutional review board (IRB) and

all patients enrolled provided autonomous informed consent which

included consent to publish. The study was conducted in

accordance with the International Council for Harmonization

ICH E6(R2) Good Clinical Practice as adopted by the United

States FDA, which aligns with the principles of Helsinki. All

patients enrolled in this study had a GTV which was well

visualized on a balanced fast field echo (TE 3.8 ms, TR 1.92 ms,

flip angle: 40 degrees) cine MRI imaging sequence which comes

standard on the Unity system (32).

The patients treated on this study received 35 Gy in 5 fractions

to the planning target volume (PTV). Reference planning was

conducted on a CT dataset with 2 mm slice thickness in a

research version of the Monaco treatment planning system

(version 6.01). The lymph node metastasis visualized on the CT

image was used for GTV delineation. No additional margin was

added to create a CTV (GTV = CTV). For this study, three separate

reference plans were made for each patient and fraction consisting

of a different PTV margin expansion. The GTV was expanded

uniformly by 2mm, 3mm, and 5mm respectively to create the PTV

in each plan. A nine-field step-and-shoot IMRT beam arrangement

which avoided the cryostat pipe was used for planning (9, 32). Each

PTV margin plan was created using a maximum of 10 segment

shape optimization loops and IMRT parameters were held constant

for each plan. All plans were normalized such that 95% of their

respective PTV received 35 Gy. A 1% Monte Carlo per plan

statistical uncertainty was used for each optimization.

Online adaptive planning was carried out using the adapt-to

shape (ATS) methodology (11, 33). A daily T1 3D image dataset was

acquired on the Unity system and contours from the reference CT

plan were deformed onto the daily MR image dataset. The OARs

and GTV were manually edited as needed. In the clinical setting, the

Hyperion optimizer in the Monaco TPS was used to generate a fully

adapted plan starting from fluence (34). Following the completion

of the adapted plan, online quality assurance procedures were

performed and MRI cine motion monitoring images were

acquired throughout the duration of treatment (32).

For this study, a simulated ATS workflow was carried out in the

research Monaco software. This was done for all 35 fractions (5
frontiersin.org
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fractions per patient) and for each PTV margin such that 105

treatment plans were generated in total. Each plan was normalized

for 95% PTV coverage and used the same IMRT parameters as the

reference plan. The minimum dose received by the hottest 0.5cc of

the bowel (Bowel D0.5cc) was compared on each daily adaptive plan

as a function of the PTV margin. Violations in all other OAR

objectives were assessed using dosimetric criteria previously

described for pelvic oligometastases using this dose and

fractionation scheme (35).

All the reported OAR doses in this study are from adaptive

plans and do not consider effects of intra-fraction motion. The

tracking algorithm used in this study only tracked the GTV. Other

OAR structures may undergo deformations and/or not move with

the same rigid motion as the GTV and thus could not be assessed.
2.2 Tracking algorithm

The GTV was retrospectively tracked on the cine MR images

that were acquired during each treatment fraction using a research

tracking algorithm provided by Elekta. Details of the algorithm have

been previously described (36). Briefly, the tracking process begins

with a training phase where 30 sagittal and 30 coronal images are

obtained. As this study focuses on tracking targets which do not

experience respiratory motion, a single average image from the

sagittal and coronal training set is generated. This sagittal and

coronal image are referred to as template images. A sagittal and

coronal plane through the centroid of the target tracking structure is

extracted from the daily 3D MR image dataset that was used for

planning. A mutual information algorithm is used to register the

template images to the extracted planes of the daily 3D MR image.
Frontiers in Oncology 03
This component of the registration can be manually edited by the

user prior to the initiation of treatment. This is referred to as the

absolute registration component. Finally, live incoming cine MRI

images are registered to the template image using a cross correlation

algorithm which focuses registration on the tracking structure plus

an additional margin expansion referred to as the binary mask. The

registration of the incoming cine images to the template images is

referred to as the relative registration. The total displacement of the

GTV is then equal to the sum of the absolute and relative

registration components. An overview of the tracking algorithm is

provided in Figure 1. This algorithm only considers rigid 3D

translations and does not account for target rotations

or deformations.

To help ensure accurate tracking, the algorithm also employs a

quality factor metric. Some of the parameters evaluated by the

metric include interplane jitter, detection of large deformations, and

large through-plane motion which can alter the apparent size of the

target in a given frame. In clinical practice, any frames in which the

quality metric reports a failure would result in the radiation beam

being turned off. For this reason, any coronal and sagittal paired

frames which reported a quality factor failure were excluded from

analysis. To assess potential systematic trends in the GTV position

with respect to treatment duration, the average position and

standard deviation of the GTV over all 35 factions was plotted at

each time point recorded.
2.3 Intra-fraction dose reconstruction

The delivered fractional dose received by the GTV was

reconstructed based on the position of the GTV as determined by
FIGURE 1

Overview of Tracking Algorithm. Images (A, B) represent extracted planes taken through the centroid of the GTV on the daily 3D MRI dataset.
Images (C, D) are the sagittal and coronal template images generated from the algorithms training phase. Images (E, F) are live incoming sagittal and
coronal cine motion monitoring images. In each image, the red contour represents the GTV structure contoured during planning (A, B) or identified
by the tracking algorithm (C–F). The algorithms reported target position is equal to the sum of the relative and absolute registration components.
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the tracking algorithm and the IMRT delivery. To do this, the IMRT

delivery time was estimated for each treatment beam such that it

could subsequently be synchronized with the MRI cine images. The

treatment time per beam was estimated using a kinematic model

incorporating beam delivery time and mechanical motion

parameters. The Monaco TPS reports the total time required to

deliver the monitor units assigned to each beam and reports the

total time required to move the MLCs between segments in each

beam. To obtain the total delivery time per beam, additional factors

were added including the gantry rotation time between each beam

angle and a correction factor which accounts for beam on delay and

dose rate ramp-up per IMRT segment. Beam on delay refers to the

time from which the MLCs reach their intended position until the

time that the radiation beam is initiated. A correction factor for

beam on delay and dose rate ramp up was determined by

comparing Monaco TPS delivery estimates with actual deliveries

times for pelvic oligometastatic cases. A correction factor was fitted

to minimize the difference between estimated and actual plan

delivery times. A value of 1.3 seconds per segment was used in

this study.

Dosimetric changes to the GTV coverage were then evaluated

for each patient, fraction, and margin using a custom in-house

program written in MATLAB (Mathworks Inc, Natick,

Massachusetts, Version 2020b). Rigid motion of the GTV was

recorded for each cine frame creating a timeline of the GTV

motion throughout the course of treatment that was synced with

the radiation delivery. The displacement of the GTV from its

planned location was taken as the average position during each

beam delivery. Radiation dose was exported in a DICOM format.

Instead of translating the target within a fixed beam arrangement,

the isocenter location listed for each DICOM file was modified to

represent the effective motion of the beam from the fixed reference

frame of the GTV. Dose distributions were recalculated using a

cubic spline interpolation to resample the translated dose

distribution from each field back onto the original DICOM

coordinate system, which was then compiled into a single

radiation dose DICOM file among all modified treatment beam

dose distributions. The resulting coverage to the GTV was
Frontiers in Oncology 04
calculated using Velocity (Varian Medical Systems Inc., Palo

Alter, CA, version 3.2.1). A summary of the workflow used to

determine the intra-fractional accumulated dose to the GTV is

provided in Figure 2.
2.4 Number of baseline shifts per
PTV margin

Future clinical workflows will enable the ability to perform

additional intra-fraction plan adaptions via a modified adapt-to-

position workflow (11, 37). A three second moving average of the

tracked GTV position was used to determine how many intra-

fraction adaptive interventions would be needed to keep the GTV

entirely within the respective PTV margin for each fraction. With

this strategy, if any of the three principal directions had a tracked

value greater than the PTV margin than an intervention would be

required. The time point at which a baseline shift was needed would

reset the target position in all three directions back to zero and the

relative displacement of the target would be tracked from that point

forward to determine if additional baseline shifts corrections would

be needed. The number of required baseline shifts was recorded for

each PTV margin plan and fraction.
3 Results

3.1 Dosimetric evaluation

All dosimetric constraints were achieved in 85.7%, 94.3%, and

100.0% of the daily ATS plans which used 5 mm, 3 mm, and 2 mm

PTV margins, respectively. All the recorded violations occurred for

the Bowel D.05cc < 32 Gy constraint. OAR objectives for the bladder,

rectum, and sigmoid were met for all fractions and PTV margins

used based on the dosimetric criteria published byWinkel et al. (35)

Compared to plans with a 5 mm PTV margin, there was a 27.4 ±

12.3% (4.0 ± 2.2 Gy) and a 18.5 ± 7.3% (2.7 ± 1.4 Gy) reduction in

the bowel D0.5cc for 2 mm and 3 mm PTV margins, respectively.
FIGURE 2

Overview of Intra-fraction Dose Accumulation Workflow.
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The percentage of the GTV which was planned to receive at

least 35 Gy (GTV V35 Gy) on the daily ATS plans was 100.0 ± 0.1%,

100.0 ± 0.1%, and 99.9 ± 0.3%, when averaged among all fractions

for the 5 mm, 3 mm, and 2 mm PTV margin plans, respectively.

When accounting for the effects of intra-fraction motion, the actual

delivered GTV V35 Gy doses were on average 100.0 ± 0.1%, 99.6 ±

1.0%, and 99.0 ± 1.4% for the 5 mm, 3 mm, and 2 mm PTV margin

expansion plans. The minimum coverage in any delivered fraction

was 99.6% for 5 mm PTV margins, 97.2% for 3 mm PTV margins,

and 95.0% using 2 mm PTV margins. The application of baseline

shift corrections was not considered in the intra-fraction dose

analysis. The box and whisker plot shown in Figure 3 summarizes

the GTV coverage and bowel doses received by each patient and

margin combination.
3.2 Intra-fraction motion analysis

The quality factor metric indicated successful GTV tracking for

greater than 99.8% of the cine imaging frames in each fraction. The

average and standard GTV displacement among all patients and

fractions is shown in Figure 4 where each time point represents the

average position among all patients and fractions at that same time

point during treatment. The average GTV position remained within

1 mm of the planned position in each principal direction for all time

points. Thus, the intra-fraction motion for these pelvic
Frontiers in Oncology 05
oligometastases appeared to be largely random with only a small

systematic drift component with respect to treatment duration.

While Figure 4 plots the position of the GTV during treatment, the

positional drift of the GTV during adaptive planning was captured

using the absolute registration value of the tracking algorithm. This

is the reason why the GTV position is not zero at the onset of

treatment in Figure 4. One of the three principal motion

components in the absolute registration exceeded the uniform

PTV margin in 17%, 6% and 0% of the delivered fractions for the

2 mm, 3 mm, and 5 mm uniform PTV margins, respectively. An

absolute registration value which exceeds the PTV margin indicates

that part of the GTV volume extends outside of the PTV prior to the

start of treatment. The mean and standard deviation absolute

registration values for each patient averaged over all 5 treatment

fractions are shown in Table 1.

Evaluating the GTV position at the beginning and again at the

end of treatment would not have adequately captured the maximum

range of GTVmotion for all cases. Figure 5 provides one example of

this and displays the motion trace of the second fraction for patient

7. The GTV was within 2mm at the start and end of treatment in

each of the 3 principal directions, but the target had an excursion of

up to 4.7mm during the treatment. The target drifted outside of

2 mm in the lateral direction at approximately 68 seconds and

physical patient motion happened causing shifts in the A/P and S/I

directions between approximately 440 and 460 seconds. However,

the patient returned to a near baseline position by 500 seconds.
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3.3 Number of baseline shifts per
PTV margin

While the average GTV coverage over all 35 fractions was 99.0%

or greater, even when using 2 mm PTV margins, there are still

instances where a portion of the total volume of the GTV can drift

outside of the PTV during treatment causing reduced coverage for

individual fractions. Figure 5 provides one example of this, and the

data presented in Figure 3A shows that individual fractions can

have GTV coverage as low as 95% in this study. The ability to
Frontiers in Oncology 06
perform intra-fraction baseline shift plans can improve the target

coverage in these instances.

Over all fractions the centroid of the GTV never exceeded 5mm

in any of the three principal directions and as such no baseline shifts

would have been required when using a 5mm PTV margin. An

average of 0.8 ± 1.0 and 0.3 ± 0.6 baseline shift corrections per

fraction would have been needed when using 2 mm and 3 mm PTV

margins, respectively. A maximum of 5 baseline shifts would have

been required in a single fraction for the 2 mm margin and up to 3

corrections when using a 3 mm PTV margin. 91.4% and 97.1% of
3
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TABLE 1 Patient Intra-Fraction Motion Metrics.

Average Absolute Registration Value Number of Baseline Shifts Needed Per Fraction and PTV Margin

Left/Right (mm) Ant/Post (mm) Sup/Inf (mm) 2mm 3mm 5mm

Patient 1 0.1 ± 0.3 -0.7 ± 0.9 0.5 ± 0.5 0.2 ± 0.4 0.0 ± 0.0 0.0 ± 0.0

Patient 2 0.5 ± 0.8 0.3 ± 0.8 -1.2 ± 0.8 1.0 ± 0.0 0.4 ± 0.5 0.0 ± 0.0

Patient 3 -0.7 ± 1.0 -1.2 ± 0.6 0.6 ± 0.5 0.2 ± 0.4 0.2 ± 0.4 0.0 ± 0.0

Patient 4 -0.2 ± 0.3 -1.4 ± 0.8 0.6 ± 1.0 0.8 ± 0.4 0.2 ± 0.4 0.0 ± 0.0

Patient 5 -0.5 ± 0.5 0.1 ± 1.2 0.2 ± 0.8 0.4 ± 0.5 0.0 ± 0.0 0.0 ± 0.0

Patient 6 0.0 ± 0.7 0.1 ± 0.9 -0.2 ± 0.6 0.4 ± 0.5 0.0 ± 0.0 0.0 ± 0.0

Patient 7 -1.1 ± 1.6 -1.2 ± 1.5 0.3 ± 1.1 2.4 ± 1.7 1.4 ± 0.9 0.0 ± 0.0
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the fractions would have required 1 or fewer baseline shift

corrections for 2 mm and 3 mm PTV margin expansions. Only

one of the seven patients would have had any fractions requiring

more than one baseline shift correction regardless of the margin

used. The average number of baseline shifts required for each

patient and PTV margin is shown in Table 1.
4 Discussions

Planning target volumes are added to CTVs to account for

random and systematic errors and to ensure appropriate coverage

to the CTV due to those uncertainties (38). MRIgRT provides the

ability to adapt for inter-fraction anatomical variations and thus

may enable PTV margin reductions. However, MRIgRT also

requires significantly longer treatment session times as compared

to VMAT (34). MRIgRT treatment session times on the order of 60

minutes have been reported and these extended times lead to

increased intra-fraction motion (28, 37, 39). One of the main

aims of this paper was to assess the practical impact on GTV

coverage due to intra-fraction motion in pelvic oligometastasis

SBRT treatments using MRIgRT as a function of PTV margin

size. Traditional margin recipes such as the Van Herk formula may

not be applicable for MRIgRT SBRT treatments due to the small

number of fractions and the ability to utilize workflows which

mitigate a portion of the intra-fraction motion, such as a baseline

shift plan after an initial adaptive plan (28, 30, 40, 41). Recently,

Kensen et al. proposed that PTV margins would be considered

adequate for rectal MRIgRT patients at the point in which 95% of

the primary GTV would receive the prescription dose in 90% of

patients (42). Based on this definition, a 2 mm PTV margin

expansion would be sufficient for all patients in our cohort as the

minimum GTV coverage for all patients and delivered fractions was

greater than or equal to 95%. However, if GTV coverages of greater

than 97% or 98% are required, then 3 mm and 5 mm PTV margins

would be required, respectively.

The clinical ATSworkflow used in this study allows physicians to

manually edit the GTV if needed, however such manual edits tend to

be minor and are not commonly required for pelvic lymph nodes

because rigidly aligning the GTV is generally sufficient for this

anatomy. There are uncertainties regarding intra-observer and/or

inter-observer variability in target delineation in the online setting,

however we feel that these are relatively small for pelvic lymph nodes

due to them being well visualized with sufficient soft tissue contrast

on 3D MRI imaging. Additionally, in conventional radiotherapy

target delineation uncertainty on the reference CT scan is a

systematic uncertainty while that is not the case in MRIgRT due to

the ability to edit the GTV on each fraction, if needed.

Maximum target excursions of up to 4.7mm were measured in

this study, which is similar to the maximum value of 5.2 mm

reported by Werensteijn-Honingh et al. (28) This study found a

median GTV coverage of 100% when using 3mm PTV margins and

is equivalent to the value reported by Winkel et al. (21) However,

the minimum reported GTV coverage was lower in our study,

96.4% versus 99.7% (21). Winkel et al. evaluated intra-fraction GTV

coverage using pre and post MRI imaging. If a similar methodology
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were used in this study, then the maximum extent of target motion

for the fraction exhibiting the lowest coverage would not have been

realized. Cine imaging at the beginning and end of treatment

showed target positions within 2mm in each of the three

principal directions. However, during the delivery of this fraction

the target had a maximum excursion of 4.7mm in the left/right

direction and greater than 3mm in the anterior/posterior and

superior/inferior directions. While using pre and post MRI

imaging generally provides a reasonable estimate of the GTV

coverage due to intra-fraction motion, this study highlights the

limitations of that method. The accumulated intra-fraction dose

depends on the extent of excursion of the GTV, and the time points

of that excursion with respect to the intensity modulated delivery.

This study captures the impacts of those relationships with a higher

granularity than previously published studies evaluating MRIgRT

for pelvic oligometastases. It also highlights that pre and post MRI

imaging may not provide a conservative estimate.

The GTV coverages reported in this work assume that no intra-

fraction adaptions were applied. Adaption methods that can apply

baseline shift corrections during treatment delivery based on the cine

motion monitoring tracking are currently being planned for clinical

release. In this study, we found that one or fewer baseline shift

corrections would have adequately kept the GTV within a 2mm and

3mm PTV margin in 91.4% and 97.1% of fractions, respectively. We

found that a maximum of 5 baseline shift corrections would have

been needed for one fraction if 2mm margins were used. While

applying this many baseline shifts is possible, it may be impractical

from a treatment time perspective. In such cases, a larger PTV

margin may be warranted (21, 28). In the future, intra-fraction

adaptions may be prepared while still treating which will improve

efficiency (37). While this study has shown that 2mm PTV margins

acceptably lead to 95% GTV coverage, the fact that the target may

extend outside of the PTV in some fractions will likely limit clinical

adoption. The impact of such excursions is complex and depends on

the volume of the GTV, duration and extent of excursion, and on the

IMRT treatment plan. Currently, the true dosimetric impact of these

excursions can only be determined retrospectively. However, the

application of baseline corrections can prevent such excursions and

improve the GTV coverage as compared to treatments delivered

without intra-fraction corrections. In the future, methods to reduce

treatment session times such as more efficient contouring methods,

faster dose optimization, and volumetric modulated arc therapy

treatment deliveries are desirable as these will further reduce the

number of intra-fraction adaptions needed (34, 43, 44).

While reduction in the PTV margin increases the number of

baseline shifts required, it also enables superior OAR sparing as

compared to plans with larger margins. This study focused on bowel

sparing as that was the main limiting OAR in the online setting.

When accounting for the impacts of intra-fraction motion, smaller

PTV margins may be required to achieve a practical benefit over

CBCT based image guided radiotherapy (16). Smaller PTV margins

will improve the feasibility of ultra-hypofractionation techniques

where OAR violations are primarily due to overlap with the PTV

(35). Reduced margins may also enable improved tumor control

probability in settings where SBRT is given as a radiotherapy boost in

the pelvis, as compared to conventional fractionation (45). Keeping
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OAR doses as low as reasonably achievable is important for pelvic

oligometastases, which may be treated in re-irradiation settings

currently or in the future due to out of field recurrence (7, 8).

One limitation of this study was the small sample size. However,

the novel workflow presented gives a more accurate estimate of

accumulated intra-fraction dose to the target and can be extended to

larger cohorts and/or other anatomical sites. Another limitation is

that only patients with well-visualized GTVs in both the sagittal and

coronal plane were included. In our experience not all lymph nodes

can be adequately visualized on motion monitoring images such

that they can be successfully tracked. This highlights a need for the

development of cine imaging sequences with different weightings to

improve target visualization.
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