4 research outputs found

    The Colour Distribution of Galaxies at Redshift Five

    Get PDF
    We present the results of a study investigating the rest-frame ultra-violet (UV) spectral slopes of redshift z~5 Lyman-break galaxies (LBGs). By combining deep Hubble Space Telescope imaging of the CANDELS and HUDF fields with ground-based imaging from the UKIDSS Ultra Deep Survey (UDS), we have produced a large sample of z~5 LBGs spanning an unprecedented factor of >100 in UV luminosity. Based on this sample we find a clear colour-magnitude relation (CMR) at z~5, such that the rest-frame UV slopes (beta) of brighter galaxies are notably redder than their fainter counterparts. We determine that the z~5 CMR is well described by a linear relationship of the form: d beta = (-0.12 +/- 0.02) d Muv, with no clear evidence for a change in CMR slope at faint magnitudes (i.e. Muv > -18.9). Using the results of detailed simulations we are able, for the first time, to infer the intrinsic (i.e. free from noise) variation of galaxy colours around the CMR at z~5. We find significant (12 sigma) evidence for intrinsic colour variation in the sample as a whole. Our results also demonstrate that the width of the intrinsic UV slope distribution of z~5 galaxies increases from Delta(beta)=0.1 at Muv=-18 to Delta(beta)=0.4 at Muv=-21. We suggest that the increasing width of the intrinsic galaxy colour distribution and the CMR itself are both plausibly explained by a luminosity independent lower limit of beta=-2.1, combined with an increase in the fraction of red galaxies in brighter UV-luminosity bins.Comment: 13 pages, 8 colour figures. Updated in response to referee report; accepted in MNRA

    The mass-metallicity-star formation rate relation at z &gt; 2 with 3D <i>Hubble Space Telescope</i>

    Get PDF
    We present new accurate measurements of the physical properties of a statistically significant sample of 103 galaxies at z~2 using near-infrared spectroscopy taken as part of the 3D-HST survey. We derive redshifts, metallicities and star formation rates (SFRs) from the [OII], [OIII] and Hbeta nebular emission lines and exploit the multi-wavelength photometry available in CANDELS to measure stellar masses. We find the mass-metallicity relation (MZR) derived from our data to have the same trend as previous determinations in the range 0<z<3, with lower mass galaxies having lower metallicities. However we find an offset in the relation compared to the previous determination of the z~2 MZR by Erb et al. 2006b, who measure metallicities using the [NII]/Halpha ratio, with metallicities lower at a given mass. Incorporating our SFR information we find that our galaxies are offset from the Fundamental Metallicity Relation (FMR) by ~0.3 dex. We investigate the photoionization conditions and find that our galaxies are consistent with the elevated ionization parameter previously reported in high-redshift galaxies. Using the BPT diagram we argue that, if this is the case, metallicity indicators based on [NII] and Halpha may not be consistent with the ones obtained via oxygen lines and Hbeta. Using a recent determination of the theoretical evolution of the star forming sequence in the BPT diagram we convert our measured [OIII]/Hbeta line ratios to [NII]/Halpha ratios. From the [NII]/Halpha ratio we infer systematically higher metallicities in better agreement with the FMR. Our results thus suggest the evolution of the FMR previously reported at z~2-3 may be an artifact of the differential evolution in metallicity indicators, and caution against using locally calibrated metallicity relations at high redshift which do not account for evolution in the physical conditions of star-forming regions.Comment: 15 pages, 13 figures, acccpted for publication in MNRA
    corecore