24 research outputs found

    Annali storici di Principato Citra, A. 10, n. 1.1 (2012)

    Get PDF
    A.10, n.1.1(2012): G. Guardia, Editoriale, P. 3 ; F. Astone, Alle origini del toponimo Cilento: la fondazione di Poseidonia ed i Tirreni-Etruschi del golfo di Salerno. Riflessioni ed ipotesi, P. 5 ; F. La Greca, Paestum e il suo territorio nella cartografia medievale e moderna, P. 45 ; A. Capano, Casalvelino e la sua frazione Acquavella. Note storiche e il catasto provvisorio del decennio napoleonico, P. 96 ; C. Bellotta, Il monachesimo basiliano nel Cilento. Il cenobio di S. Giovanni a Piro, P. 130 ; S. Villano, Città e patriziato nel Regno di Napoli attraverso le consulte della Camera di S. Chiara, P. 146 ; M. Rinaldi, Agropoli: il territorio, le fonti e la ricerca archeologica, P. 162

    A directed search for gravitational waves from Scorpius X-1 with initial LIGO

    Get PDF
    19 pages, 8 figuresInternational audienceWe present results of a search for continuously-emitted gravitational radiation, directed at the brightest low-mass X-ray binary, Scorpius X-1. Our semi-coherent analysis covers 10 days of LIGO S5 data ranging from 50-550 Hz, and performs an incoherent sum of coherent F\mathcal{F}-statistic power distributed amongst frequency-modulated orbital sidebands. All candidates not removed at the veto stage were found to be consistent with noise at a 1% false alarm rate. We present Bayesian 95% confidence upper limits on gravitational-wave strain amplitude using two different prior distributions: a standard one, with no a priori assumptions about the orientation of Scorpius X-1; and an angle-restricted one, using a prior derived from electromagnetic observations. Median strain upper limits of 1.3e-24 and 8e-25 are reported at 150 Hz for the standard and angle-restricted searches respectively. This proof of principle analysis was limited to a short observation time by unknown effects of accretion on the intrinsic spin frequency of the neutron star, but improves upon previous upper limits by factors of ~1.4 for the standard, and 2.3 for the angle-restricted search at the sensitive region of the detector

    Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data

    Get PDF
    We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100–1500 Hz and with a frequency time derivative in the range of [−1.18,+1.00]×10−8  Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from the initial LIGO sixth science run and covers a larger parameter space with respect to any past search. A Loosely Coherent detection pipeline was applied to follow up weak outliers in both Gaussian (95% recovery rate) and non-Gaussian (75% recovery rate) bands. No gravitational wave signals were observed, and upper limits were placed on their strength. Our smallest upper limit on worst-case (linearly polarized) strain amplitude h0 is 9.7×10−25 near 169 Hz, while at the high end of our frequency range we achieve a worst-case upper limit of 5.5×10−24. Both cases refer to all sky locations and entire range of frequency derivative values

    Virgo Commissioning Progress

    Get PDF
    none130sìmixedF. Acernese ; P. Amico; M. Alshourbagy; F. Antonucci; S. Aoudia ; P. Astone; S. Avino ; D. Babusci ; G. Ballardin ; F. Barone ; L. Barsotti; M. Barsuglia ; F.Beauville ; S. Bigotta; M.A.Bizouard ; C.Boccara ; F.Bondu ; L.Bosi; C. Bradaschia; S. Birindelli; S. Braccini; A. Brillet ; V. Brisson ; D.Buskulic ; E.Calloni ; E.Campagna ; F. Carbognani ; F.Cavalier ; R.Cavalieri ; G.Cella; E.Cesarini ; E.Chassande-Mottin ; N. Christensen ; A.-C.Clapson ; F.Cleva ; C. Corda; A. Corsi; F.Cottone; J.-P.Coulon ; E.Cuoco ; A. Dari; V.Dattilo ; M.Davier ; M. del Prete ; R.De Rosa ; L.Di Fiore ; A.Di Virgilio; B.Dujardin ; A.Eleuteri ; I.Ferrante; F.Fidecaro; I.Fiori; R.Flaminio; ; J.-D.Fournier ; S.Frasca; F.Frasconi; L.Gammaitoni; F. Garufi ; E. Genin; A.Gennai; A.Giazotto; G.Giordano ; L. Giordano ; R. Gouaty ; D. Grosjean ; G.Guidi ; S.Hebri ; H.Heitmann ; P.Hello ; S. Karkar ; S.Kreckelbergh ; P.La Penna ; M. Laval ; N. Leroy ; N.Letendre ; B. Lopez ; M. Lorenzini ; V.Loriette ; G.Losurdo ; J.-M.Mackowski ; E.Majorana ; C.N.Man ; M. Mantovani; F. Marchesoni; F.Marion ; J. Marque ; F.Martelli ; A.Masserot ; M.Mazzoni ; F. Menzinger ; L.Milano ; C. Moins ; J.Moreau ; N.Morgado ; B.Mours ; F. Nocera ; C.Palomba; F.Paoletti;; S. Pardi ; A. Pasqualetti ; R.Passaquieti; D.Passuello; F. Piergiovanni ; L.Pinard ; R.Poggiani; M.Punturo; P.Puppo; K.Qipiani ; P.Rapagnani; V.Reita ; A.Remillieux ; F. Ricci; I.Ricciardi ; P. Ruggi ; G.Russo ; S.Solimeno ; A. Spallicci ; M. Tarallo; M. Tonelli; A. Toncelli; E.Tournefier ; F.Travasso; C. Tremola; G. Vajente; D. Verkindt ; F. Vetrano ; A.Viceré ; J.-Y.Vinet ; H. Vocca; M. YvertAcernese, F.; Amico, P.; Alshourbagy, M.; Antonucci, F.; Aoudia, S.; Astone, P.; Avino, S.; Babusci, D.; Ballardin, G.; Barone, F.; Barsotti, L.; Barsuglia, M.; Beauville, F.; Bigotta, S.; Bizouard, M. A.; Boccara, C.; Bondu, F.; Bosi, L.; Bradaschia, C.; Birindelli, S.; Braccini, S.; Brillet, A.; Brisson, V.; Buskulic, D.; Calloni, E.; Campagna, E.; Carbognani, F.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cesarini, E.; Chassande-Mottin, E.; Christensen, N.; Clapson, A. -C.; Cleva, F.; Corda, C.; Corsi, A.; Cottone, F.; Coulon, J. -P.; Cuoco, E.; Dari, A.; Dattilo, V.; Davier, M.; del Prete, M.; De Rosa, R.; Di Fiore, L.; Di Virgilio, A.; Dujardin, B.; Eleuteri, A.; Ferrante, I.; Fidecaro, F.; Fiori, I.; Flaminio, R.; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Gammaitoni, L.; Garufi, F.; Genin, E.; Gennai, A.; Giazotto, A.; Giordano, G.; Giordano, L.; Gouaty, R.; Grosjean, D.; Guidi, G.; Hebri, S.; Heitmann, H.; Hello, P.; Karkar, S.; Kreckelbergh, S.; La Penna, P.; Laval, M.; Leroy, N.; Letendre, N.; Lopez, B.; Lorenzini, M.; Loriette, V.; Losurdo, G.; Mackowski, J. -M.; Majorana, E.; Man, C. N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Marque, J.; Martelli, F.; Masserot, A.; Mazzoni, M.; Menzinger, F.; Milano, L.; Moins, C.; Moreau, J.; Morgado, N.; Mours, B.; Nocera, F.; Palomba, C.; Paoletti, F.; Pardi, S.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Piergiovanni, F.; Pinard, L.; Poggiani, R.; Punturo, M.; Puppo, P.; Qipiani, K.; Rapagnani, P.; Reita, V.; Remillieux, A.; Ricci, F.; Ricciardi, I.; Ruggi, P.; Russo, G.; Solimeno, S.; Spallicci, A.; Tarallo, M.; Tonelli, M.; Toncelli, A.; Tournefier, E.; Travasso, F.; Tremola, C.; Vajente, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J. -Y.; Vocca, H.; Yvert, M

    THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION

    Get PDF
    The Virgo interferometer for gravitational wave detection is described. During the commissioning phase that followed the first scientific data taking run an unprecedented sensitivity was obtained in the range 10-60 Hz. Since then an upgrade program has begun, with the aim of increasing the sensitivity, mainly through the introduction of fused silica wires to suspend mirrors and by increasing the Finesse of the Fabry-Perot cavities. Plans until the shutdown for the construction of the Advanced Virgo detector are given as well as the status of the upgrade

    A THERMAL COMPENSATION SYSTEM FOR THE GRAVITATIONAL WAVE DETECTOR VIRGO

    Get PDF
    Thermal lensing due to the absorption of the laser beam in core optics of gravitational wave interferometers can represent a strong limitation to their operation and sensitivity. This effect has already been observed in the present detectors and will become more relevant in the future upgraded interferometers, due to the much higher circulating power. A thermal compensation system, based on a CO2 laser projector, has been installed in Virgo, allowing to increase the interferometer input power from 7 to 17 W. The thermal compensation system can introduce displacement noise by means of several mechanisms. This noise depends on the CO2 laser intensity fluctuations and on the power needed to compensate thermal effects. To make the displacement noise compliant with Virgo specifications, a feedback system to reduce the CO2 laser intensity fluctuations has been implemented

    Status and perspectives of the Virgo gravitational wave detector

    Get PDF
    International audienceVirgo is designed to detect gravitational waves of both astrophysical and cosmological origin in the frequency range from a few Hz to a few kHz. After the end of the first science run, partially overlapped with the LIGO fifth science run, the detector underwent several upgrades to improve its sensitivity. The second Virgo science run started at the beginning of July 2009 in coincidence with LIGO. A further upgrade is planned at beginning of 2010 with the installation of new suspensions for the test masses and of new mirrors. This will lead to a considerable improvement in the sensitivity and represents an intermediate step toward the development of the advanced detectors
    corecore