118 research outputs found

    Anatomic heterogeneity of the rat amygdaloid complex

    Get PDF
    The amygdala is a nuclear complex composed of 13 nuclei and their subdivisions. Tract-tracing studies performed over the past 20 years demonstrate that each nucleus is uniquely connected with other brain areas. Consistent with anatomic heterogeneity, the functions of the amygdala vary from attention to memory to formation of emotional responses to sensory stimuli. Here, we briefly review the principles of amygdaloid neuronal wiring that underlie the computations necessary to perform such complex behavioural functions

    Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy

    Get PDF
    AbstractThe entorhinal cortex (Brodmann’s area 28) is located at the anterior aspect of the parahippocampal gyrus ventral to the amygdala and the hippocampus. It is reciprocally interconnected with the hippocampus via glutamatergic pathways. We investigated whether the entorhinal cortex is damaged in human temporal lobe epilepsy (TLE). The volume of the entorhinal cortex was measured using magnetic resonance imaging (MRI) in 36 patients with cryptogenic TLE and in 21 controls. The mean volumes of the entorhinal cortex on the focal side did not differ from controls. In 11 of 36 patients, however, the entorhinal cortex volume was reduced by 25%. Entorhinal volume correlated with hippocampal volume in TLE (ipsilaterally, r= 0.454, P< 0.01; contralaterally, r= 0.340, P< 0.05). Further, 64% of patients with 25% entorhinal cortex damage had ipsilateral hippocampal atrophy. On the other hand, right focal TLE patients with hippocampal atrophy had a 19% volume reduction of the ipsilateral entorhinal cortex (P< 0.05). The volume of the entorhinal cortex correlated with the duration of TLE (r= −0.335, P< 0.05). The present study indicates that the entorhinal cortex might be damaged in a subpopulation of patients with cryptogenic TLE. In most cases, volume reduction was associated with hippocampal damage. These data suggest that entorhinal damage contributes to the symptomatology in TLE

    Effect of cell culture media on extracellular vesicle secretion from mesenchymal stromal cells and neurons

    Get PDF
    Publisher Copyright: © 2022Background: Extracellular vesicles (EVs) secreted by neuronal cells in vitro have promising therapeutic potential for brain diseases. Optimization of cell culture conditions and methodologies for high-yield isolation of EVs for preclinical and clinical applications, however, remains a challenge. Objective: To probe the cell culture conditions required for optimal EV secretion by human-derived neuronal cells. Methodology: First, we optimized the EV purification protocol using human mesenchymal stromal cell (MSC) cultures. Next, we compared the effects of different variables in human pluripotent stem cell (hPSC)-derived neuronal cultures on EV secretion. EVs were isolated from cell conditioned media (CCM) and control media with no cells (NCC) using ultrafiltration combined with size-exclusion chromatography (SEC). The hPSC neurons were cultured in 2 different media from which EVs were collected at 2 maturation time-points (days 46 and 60). Stimulation with 25 mM KCl was also evaluated as an activator of EV secretion by neurons. The collected SEC fractions were analyzed by nanoparticle tracking analysis (NTA), protein concentration assay, and blinded transmission electron microscopy (TEM). Results: A peak in cup-shaped particles was observed in SEC fractions 7–10 of MSC samples, but not corresponding media controls, indicating successful isolation of EVs. Culture medium had no significant effect on EV yield. The EV yield of the samples did not differ significantly according to the culture media used or the cell maturation time-points. Stimulation of neurons with KCl for 3 h reduced rather than increased the EV yield. Conclusions: We demonstrated successful EV isolation from MSC and neuronal cells using an ultrafiltration-SEC method. The EV yield from MSC and neuronal cultures exhibited a large batch effect, apparently related to the culture media used, highlighting the importance of including NCC as a negative control in all cell culture experiments.Peer reviewe

    The written declaration on epilepsy : an important achievement for Europe and beyond

    Get PDF
    On 15th September 2011, the European Written Declaration on Epilepsy was passed by the European Union (EU) Parliament. This was a significant moment for all people who have been fighting over the years for a just recognition of the importance of epilepsy in the European political agenda. The whole process described below included several months of concerted effort by Members of the European Parliament (MEPs) and by Epilepsy Advocacy Europe (EAE), a joint task force of the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). ILAE and IBE member associations in Europe and many individuals also contributed greatly to the success of this initiative.peer-reviewe

    Hippocampal position and orientation as prognostic biomarkers for posttraumatic epileptogenesis: an experimental study in a rat lateral fluid percussion model

    Get PDF
    Objective This study was undertaken to identify prognostic biomarkers for posttraumatic epileptogenesis derived from parameters related to the hippocampal position and orientation. Methods Data were derived from two preclinical magnetic resonance imaging (MRI) follow-up studies: EPITARGET (156 rats) and Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx; University of Eastern Finland cohort, 43 rats). Epileptogenesis was induced with lateral fluid percussion-induced traumatic brain injury (TBI) in adult male Sprague Dawley rats. In the EPITARGET cohort, T2*-weighted MRI was performed at 2, 7, and 21 days and in the EpiBioS4Rx cohort at 2, 9, and 30 days and 5 months post-TBI. Both hippocampi were segmented using convolutional neural networks. The extracted segmentation mask was used for a geometric construction, extracting 39 parameters that described the position and orientation of the left and right hippocampus. In each cohort, we assessed the parameters as prognostic biomarkers for posttraumatic epilepsy (PTE) both individually, using repeated measures analysis of variance, and in combination, using random forest classifiers. Results The extracted parameters were highly effective in discriminating between sham-operated and TBI rats in both the EPITARGET and EpiBioS4Rx cohorts at all timepoints (t; balanced accuracy &gt; .9). The most discriminating parameter was the inclination of the hippocampus ipsilateral to the lesion at t = 2 days and the volumes at t &gt;= 7 days after TBI. Furthermore, in the EpiBioS4Rx cohort, we could effectively discriminate epileptogenic from nonepileptogenic animals with a longer MRI follow-up, at t = 150 days (area under the curve = .78, balanced accuracy = .80, p = .0050), based on the orientation of both hippocampi. We found that the ipsilateral hippocampus rotated outward on the horizontal plane, whereas the contralateral hippocampus rotated away from the vertical direction. Significance We demonstrate that assessment of TBI-induced hippocampal deformation by clinically translatable MRI methodologies detects subjects with prior TBI as well as those at high risk of PTE, paving the way toward subject stratification for antiepileptogenesis studies

    Proteomics of Deep Cervical Lymph Nodes after Experimental Traumatic Brain Injury

    Get PDF
    Traumatic brain injury (TBI) damages the glymphatic-lymphatic system. We hypothesized that brain injury associated with trauma results in the enrichment of brain-relevant proteins in deep cervical lymph nodes (DCLNs), the end station of meningeal lymphatic vessels, and that some of these proteins will present mechanistic tissue biomarkers for TBI. Proteomes of rat DCLNs were investigated in the left DCLN (ipsilateral to injury) and right DCLN at 6.5 months after severe TBI induced by lateral fluid percussion injury or after sham operation. DCLN proteomes were identified using sequential window acquisition of all theoretical mass spectra. Group comparisons, together with functional protein annotation analyses, were used to identify regulated protein candidates for further validation and pathway analyses. Validation of a selected candidate was assessed using enzyme-linked immunosorbent assay. Analysis comparing post-TBI animals with sham-operated controls revealed 25 upregulated and 16 downregulated proteins in the ipsilateral DCLN and 20 upregulated and 28 downregulated proteins in the contralateral DCLN of post-TBI animals. Protein class and function analyses highlighted the dysregulation of enzymes and binding proteins. Pathway analysis indicated an increase in autophagy. Biomarker analysis suggested that a subgroup of post-TBI animals had an increase in zonula occludens-1 coexpressed with proteins linked to molecular transport and amyloid precursor protein. We propose here that, after TBI, a subgroup of animals exhibit dysregulation of the TBI-relevant protein interactome in DCLNs, and that DCLNs might thus serve as an interesting biomarker source in future studies aiming to elucidate pathological brain functioning.Peer reviewe

    Analytic Tools for Post-traumatic Epileptogenesis Biomarker Search in Multimodal Dataset of an Animal Model and Human Patients

    Get PDF
    Epilepsy is among the most common serious disabling disorders of the brain, and the global burden of epilepsy exerts a tremendous cost to society. Most people with epilepsy have acquired forms of the disorder, and the development of antiepileptogenic interventions could potentially prevent or cure epilepsy in many of them. However, the discovery of potential antiepileptogenic treatments and clinical validation would require a means to identify populations of patients at very high risk for epilepsy after a potential epileptogenic insult, to know when to treat and to document prevention or cure. A fundamental challenge in discovering biomarkers of epileptogenesis is that this process is likely multifactorial and crosses multiple modalities. Investigators must have access to a large number of high quality, well-curated data points and study subjects for biomarker signals to be detectable above the noise inherent in complex phenomena, such as epileptogenesis, traumatic brain injury (TBI), and conditions of data collection. Additionally, data generating and collecting sites are spread worldwide among different laboratories, clinical sites, heterogeneous data types, formats, and across multi-center preclinical trials. Before the data can even be analyzed, these data must be standardized. The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a multi-center project with the overarching goal that epileptogenesis after TBI can be prevented with specific treatments. The identification of relevant biomarkers and performance of rigorous preclinical trials will permit the future design and performance of economically feasible full-scale clinical trials of antiepileptogenic therapies. We have been analyzing human data collected from UCLA and rat data collected from the University of Eastern Finland, both centers collecting data for EpiBioS4Rx, to identify biomarkers of epileptogenesis. Big data techniques and rigorous analysis are brought to longitudinal data collected from humans and an animal model of TBI, epilepsy, and their interaction. The prolonged continuous data streams of intracranial, cortical surface, and scalp EEG from humans and an animal model of epilepsy span months. By applying our innovative mathematical tools via supervised and unsupervised learning methods, we are able to subject a robust dataset to recently pioneered data analysis tools and visualize multivariable interactions with novel graphical methods

    Transcription factors Tp73, Cebpd, Pax6, and Spi1 rather than DNA methylation regulate chronic transcriptomics changes after experimental traumatic brain injury

    Get PDF
    Traumatic brain injury (TBI) induces a wide variety of cellular and molecular changes that can continue for days to weeks to months, leading to functional impairments. Currently, there are no pharmacotherapies in clinical use that favorably modify the post-TBI outcome, due in part to limited understanding of the mechanisms of TBI-induced pathologies. Our system biology analysis tested the hypothesis that chronic transcriptomics changes induced by TBI are controlled by altered DNA-methylation in gene promoter areas or by transcription factors. We performed genome-wide methyl binding domain (MBD)-sequencing (seq) and RNA-seq in perilesional, thalamic, and hippocampal tissue sampled at 3&nbsp;months after TBI induced by lateral fluid percussion in adult male Sprague-Dawley rats. We investigated the regulated molecular networks and mechanisms underlying the chronic regulation, particularly DNA methylation and transcription factors. Finally, we identified compounds that modulate the transcriptomics changes and could be repurposed to improve recovery. Unexpectedly, DNA methylation was not a major regulator of chronic post-TBI transcriptomics changes. On the other hand, the transcription factors Cebpd, Pax6, Spi1, and Tp73 were upregulated at 3&nbsp;months after TBI (False discovery rate&thinsp;&lt;&thinsp;0.05), which was validated using digital droplet polymerase chain reaction. Transcription regulatory network analysis revealed that these transcription factors regulate apoptosis, inflammation, and microglia, which are well-known contributors to secondary damage after TBI.&nbsp;Library of Integrated Network-based Cellular Signatures (LINCS) analysis identified 118 pharmacotherapies that regulate the expression of Cebpd, Pax6, Spi1, and Tp73. Of these, the antidepressant and/or antipsychotic compounds trimipramine, rolipramine, fluspirilene, and chlorpromazine, as well as the anti-cancer therapies pimasertib, tamoxifen, and vorinostat were strong regulators of the identified transcription factors, suggesting their potential to modulate the regulated transcriptomics networks to improve post-TBI recovery

    Opportunities for improving animal welfare in rodent models of epilepsy and seizures

    Get PDF
    Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs)
    corecore