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The amygdala is a nuclear complex composed of 13 nuclei and cortical areas
and their subdivisions. Tract-tracing studies performed over the past 20 years
demonstrate that each nucleus is uniquely connected with other brain areas.
Consistent with anatomic heterogeneity, the functions of the amygdala vary from
attention to memory to formation of emotional responses to sensory stimuli. Here,
we briefly review the principles of amygdaloid neuronal wiring that underlie the
computations necessary to perform such complex behavioural functions.
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THE AMYGDALA
IS A NUCLEAR GROUP

The rat amygdala can be partitioned into 13 nu-
clei and cortical areas and their subdivisions based
on cytoarchitectonic and chemoarchitectonic crite-
ria [4, 96, 102]. Therefore, the term „amygdaloid
complex” rather than „amygdala” has been adopt-
ed. Connectional studies with anterograde and ret-
rograde neuronal tracers further support the idea of
the heterogeneity of the amygdaloid complex by
demonstrating that each of the amygdaloid nuclei
differs from the others connectionally [4,95,102].

Consistent with anatomic heterogeneity, the
amygdala is involved in a large number of different
behavioural functions. One of the most commonly in-
vestigated functions of the rat amygdala is the gener-
ation of appropriate motor and autonomic responses
to emotionally relevant sensory stimuli in a fear-condi-
tioning paradigm [56]. In rats, the amygdala is also a
critical structure to the fear-potentiated startle response
[32], modulation of memory formation in the hippoc-
ampus [20] and attention [34]. In humans, imaging
studies performed over the past 5 years have initiated
a renaissance in amygdala research and provided a new
insight into the amygdaloid functions. A classic study

by Adolphs and co-workers [1] reported that patient
S.M. who had Urbach-Wiethe disease, causing bilater-
al amygdaloid damage, was impaired in recognising
fear in facial expressions. Since then, the human
amygdala has also been demonstrated to be critically
involved in the recognition of emotion in auditory [117]
and olfactory stimuli [153], acquisition of conditioned
autonomic responses to visual or auditory stimuli [7,
55], recognition of approachability and trustworthi-
ness in facial expressions [2], perception of body move-
ments [14], acquisition [19] and retrieval [104] of memo-
ries for emotionally-arousing events, processing of affec-
tive aspects of dreams [63] and discrimination of stimuli
based on their acquired behavioural significance [77].

These studies raise the question: How is the
amygdala wired with other brain regions to allow it to
perform complicated tasks that help rats to encounter
and survive a predator, or humans to cope with ongo-
ing social signalling in everyday-life situations? How
are computations performed within the intra-amygda-
loid circuitries? We will briefly review the major aspects
of the connectivity of the amygdaloid nuclei in rats.
On the basis of the anatomic findings, we speculate
about the potential consequences of nucleus-specific
damage to the functioning of the amygdala.
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EACH AMYGDALOID NUCLEUS HAS
A UNIQUE SET OF AFFERENT, INTRIN-

SIC AND OUTPUT CONNECTIONS

Nomenclature
The amygdaloid complex is partitioned into vari-

ous nuclei and cortical areas based on the nomen-
clature described by Price et al. [102] with modifica-
tions [41,96] (Table 1). Briefly, the deep nuclei in-
clude the lateral nucleus, basal nucleus and accessory
basal nucleus. The superficial nuclei include the
anterior cortical nucleus, bed nucleus of the acces-
sory olfactory tract, medial nucleus, nucleus of the
lateral olfactory tract, periamygdaloid cortex and
posterior cortical nucleus. The remaining nuclei in-
clude the anterior amygdaloid area, central nucleus,
amygdalohippocampal area and the intercalated
nuclei. The location of the different amygdaloid re-
gions is shown in Figure 1. Cortical areas are parti-
tioned according to McDonald [69] and the other
brain areas according to the atlas of Paxinos and
Watson [89] (Fig. 2). In the description of afferent,
intrinsic and efferent connectivity, only those pro-
jections that are described in the original publica-
tions as „moderate” or „heavy” in density are sum-
marised. The inter-amygdaloid connections that are
relatively prominent in rats are also described. Based
on current knowledge, however, it is difficult to judge

the density of each inter-amygdaloid connection.
Connectivity of the intercalated nuclei and the ante-
rior amygdaloid area has not yet been systematical-
ly investigated and therefore these areas are exclud-
ed from the present description. For a detailed de-
scription of connections, see Pitkänen [95].

Lateral nucleus
Projections to the lateral nucleus. The connec-

tivity of the lateral nucleus is summarised in Figure
3. The lateral nucleus receives substantial projections
from the sensory-related cortical areas including the
visual, auditory, somatosensory and gustatory/vis-
cerosensory cortices. The heaviest projections from
the frontal lobe originate in the infralimbic region
and dorsal agranular insula. Projections from the
medial temporal lobe memory system originate in
the perirhinal and entorhinal cortices as well as from
the temporal (i.e., ventral) end of the subiculum.
Other major projections originate in the midline and
auditory thalamus, some hypothalamic nuclei and
dorsal raphe.

Intra-amygdaloid connections. The lateral nu-
cleus receives substantial inputs from the basal, ac-
cessory basal and medial nuclei and the periamygda-
loid cortex. The intra-amygdaloid pathways originat-
ing in the lateral nucleus are more widespread than
those originating in any other amygdaloid nucleus.

Table 1. Amygdaloid nuclei and nuclear divisions

Deep nuclei

Lateral nucleus (L)
dorsolateral division (Ldl)
ventrolateral division (Lvl)
medial division (Lm)

Basal nucleus (B)
magnocellular division (Bmc)
intermediate division (Bi)
parvicellular division (Bpc)

Accessory basal nucleus (AB)
magnocellular division (ABmc)
parvicellular division (ABpc)

Superficial nuclei

Nucleus of the lateral olfactory tract (NLOT)

Bed nucleus of the accessory olfactory tract (BAOT)

Anterior cortical nucleus (COa)

Medial nucleus (M)
rostral division (Mr)
central division

    dorsal part (Mcd)
    ventral part (Mcv)
caudal division (Mc)

Periamygdaloid cortex
periamygdaloid cortex (PAC)
periamygdaloid cortex, medial subfield (PACm)
periamygdaloid cortex, sulcal subfield (PACs)

Posterior cortical nucleus (COp)

Other amygdaloid areas

Anterior amygdaloid area (AAA)

Central nucleus (CE)
capsular division (CEc)
lateral division (CEl)
intermediate division (CEi)
medial division (CEm)

Amygdalohippocampal area (AHA)
medial division (AHAm)
lateral division (AHAl)

Intercalated nuclei (I)
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Figure 1. Brightfield photomicrographs from thionin-stained coronal sections of the rat amygdaloid complex showing the location of vari-
ous amygdaloid nuclei and cortical areas and their subdivisions. Six rostrocaudal levels are presented (panel A is the most rostral and
panel F the most caudal). Nuclear and divisional boundaries are indicated by continuous and dashed lines, respectively. For abbreviations,
see Table 1. Scale bar equals 0.5 mm
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Figure 2. Schematic line-drawings describing the location of various brain areas used in the description of amygdaloid afferents and ef-
ferents in Figures 3 to 12. For the list of abbreviations, see Table 2 and for the list of references, see Table 3
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They terminate in the basal, accessory basal, medial,
central and posterior cortical nuclei as well as in the
periamygdaloid cortex and the amygdalohippocam-
pal area. The lateral nucleus is not interconnected
with the contralateral amygdala.

Projections from the lateral nucleus. Overall, the
outputs originating in the lateral nucleus are not as
widespread as the inputs. The heaviest projections to
the sensory-related cortical areas terminate in the in-
sular cortex. Within the frontal cortex, the infralimbic
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Figure 3. Afferent, intra-amygdaloid and efferent connections of the lateral nucleus. Only the moderate-to-heavy projections are indicated.
In Figs. 3–12 closed arrow refers to a reciprocal connection and open arrow to an unidirectional projection
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cortex and the ventral agranular insula receive a sub-
stantial input from the lateral nucleus. Amygdaloid
outputs to the medial temporal lobe are directed to
the perirhinal and entorhinal cortices as well as to the
parasubiculum. Moderate-to-heavy projections to the
nucleus accumbens have also been described.

Basal nucleus
Projections to the basal nucleus. The connec-

tivity of the basal nucleus is summarised in Figure 4.
Inputs to the basal nucleus from sensory related cor-
tical areas are not as widespread as those to the lat-
eral nucleus. There are moderate-to-heavy inputs
from the dysgranular and agranular insula and the
parietal rhinal cortex. In the frontal lobe, the prelim-
bic area and the dorsal agranular insula project sub-
stantially to the basal nucleus. Within the medial tem-
poral lobe memory system, the basal nucleus receives
inputs from the perirhinal cortex as well as from sev-
eral levels of the hippocampal formation1, including
the entorhinal cortex, the temporal end of the CA1
and the subiculum. Other regions providing a mod-
erate-to-heavy input to the basal nucleus include the
paraventricular nucleus of the thalamus.

Intra-amygdaloid connections. The basal nucle-
us receives substantial intra-amygdaloid inputs from
the lateral and anterior cortical nuclei. The basal nu-
cleus projects to the lateral, central and anterior cor-
tical nuclei as well as to the nucleus of the lateral
olfactory tract and the amygdalohippocampal area.
The basal nucleus projects to the contralateral basal
nucleus as well as to the contralateral central nucle-
us, the nucleus of the lateral olfactory tract and the
anterior amygdaloid area.

Projections from the basal nucleus. The basal
nucleus projects to the infralimbic cortex in the pre-
frontal cortex. In addition, it provides substantial in-
puts to the hippocampal formation, including the en-
torhinal cortex, the temporal end of CA3 and CA1
subfields, the temporal subiculum and the parasubic-
ulum. Heavy topographically-organised projections
also terminate in the bed nucleus of the stria termina-
lis, caudate-putamen, nucleus accumbens, claustrum,
substantia innominata and the olfactory tubercle.

Accessory basal nucleus
Projections to the accessory basal nucleus. The

connectivity of the accessory basal nucleus is sum-
marised in Figure 5. Sensory-related cortical areas that
provide major inputs to the accessory basal nucleus
include the agranular insula, the parietal rhinal cor-
tex and the caudal piriform cortex. Within the pre-

frontal cortex, projections originate in the infralimbic
cortex. Other major inputs originate in the medial tem-
poral lobe memory system, including projections from
the perirhinal and entorhinal cortices and the tempo-
ral end of the subiculum. Other projections originate
in the paraventricular nucleus of the thalamus and
the perifornical region of the hypothalamus.

Intra-amygdaloid connections. The accessory
basal nucleus receives substantial inputs from the
lateral and medial nuclei of the amygdala. In gener-
al, its intra-amygdaloid outputs appear more wide-
spread than its inputs. The outputs terminate in the
lateral, central, medial and posterior cortical nuclei
as well as in the periamygdaloid cortex and the
amygdalohippocampal area. Contralaterally, the ac-
cessory basal nucleus projects to the accessory basal
and medial nuclei.

Projections from the accessory basal nucleus.
The accessory basal nucleus provides substantial pro-
jections to the prefrontal cortex, particularly to the
infralimbic cortex. It also provides inputs to several
levels of the medial temporal lobe memory system,
including the perirhinal cortex, the entorhinal cor-
tex, the temporal end of the CA1 and the subiculum
and the parasubiculum. A substantial projection to
the bed nucleus of the stria terminalis, the caudate-
putamen, the nucleus accumbens, the substantia
innominata and the ventromedial nucleus of the
hypothalamus has also been described.

Central nucleus
Projections to the central nucleus. The connec-

tivity of the central nucleus is summarised in Figure
6. The central nucleus receives a substantial amount
of sensory information from a large variety of corti-
cal areas. These include inputs from the visual, audi-
tory, somatosensory and visceral/gustatory cortices.
The central nucleus also receives substantial inputs
from the medial and lateral prefrontal cortex, includ-
ing the infralimbic cortex and dorsal agranular insu-
la, respectively. Projections from the medial tempo-
ral lobe memory system originate in the perirhinal
and entorhinal cortices and the ventral subiculum.
The entorhinal and perirhinal inputs terminate largely
in the capsular division of the central nucleus, ac-
cording to McDonald and Mascagni [72] and Mc-
Donald [69]. Terminals located in this region were
considered to belong to the projection terminating
in the amygdalostriatal area by Shi and Cassell [123],
who state that the perirhinal cortex does not project
to the central nucleus. Otherwise, the rostral part of

1The hippocampal formation includes the entorhinal cortex, dentate gyrus, hippocampus, subiculum, presubiculum, and parasubiculum
according to Amaral and Witter (1989).



7

Asla Pitkänen et al., Anatomic heterogeneity of the amygdala

Table 2. Abbreviations for figures 2–12

CORTEX
AId Dorsal agranular insular cortex
AIp Posterior agranular insular cortex
DIg Gustatory dysgranular insular cortex
DIv Visceral dysgranular insular cortex
EC Entorhinal cortex
GI Granular insular cortex
Oc1 Primary occipital cortex
Oc2 Secondary occipital cortex
PaRh Parietal rhinal cortex
PC Piriform cortex
PRC Perirhinal cortex
PRCd Perirhinal cortex, dorsal portion
PrCI Lateral precentral cortex
PrCm Medial precentral cortex
PRCv Perirhinal cortex, ventral portion
PV Parietal ventral area
SI Primary somatosensory area
SII Secondary somatosensory area
Te1 Temporal cortex, area 1
Te2 Temporal cortex, area 2
Te2D Temporal cortex, area 2, dorsal portion
Te3 Temporal cortex, area 3
Te3R Temporal cortex, area 3, rostral portion

FRONTAL CORTEX
AC Dorsal anterior cingulate cortex
AId Dorsal agranular insular cortex
AIv Ventral agranular insular cortex
AOB Accessory olfactory bulb
AON Anterior olfactory nucleus
DP Dorsal peduncular cortex
IL Infralimbic cortex
LO Lateral orbital cortex
MO Medial orbital cortex
OB Olfactory bulb
PL Prelimbic cortex
PrCm Medial precentral cortex
TT Tenia tecta

HIPPOCAMPUS AND SUBICULAR COMPLEX
CA1 CA1 field of the hippocampus
CA2 CA2 field of the hippocampus
CA3 CA3 field of the hippocampus
DG Dentate gyrus
EC Entorhinal cortex
ParaS Parasubiculum
S Subiculum

STRIATUM AND BASAL FOREBRAIN
Acc Nucleus accumbens
BNST Bed nucleus of stria terminalis
Cd-Pu Caudate-Putamen
Cl Claustrum
EP Endopiriform nucleus
GP Globus pallidus
ICa Islands of Calleja
LS Lateral septum
MS Medial septum
NDB Nucleus of the horizontal limb of the diagonal band
SI Substantia innominata
OT Olfactory tubercle

MIDBRAIN
bPN Basilar pontine nucleus
CnF Cuneiform nucleus
CS Nucleus centralis superior
DR Dorsal raphe nucleus
LDTg Laterodorsal tegmental nucleus
LiC Nucleus linearis caudalis
LL Lateral lemniscus
PAG Periaqueductal grey

PPTg Pedunculopontine tegmental nucleus
R Raphe nucleus
VTA Ventral tegmental area

PONS
A8 A8 dopamine cells
LC Locus coeruleus
PB Parabrachial nucleus
RPC Nucleus reticularis pontis caudalis
sC Nucleus subcoeruleus
V Mesencephalic nucleus of trigeminal nerve

MEDULLA
A1 A1 noradrenaline cells
Amb Nucleus ambiguus
C1 C1 adrenaline cells
dmX Dorsal motor nucleus of vagus
GS Nucleus gigantocellularis
NTS Nucleus of the solitary tract
pGS Nucleus paragigantocellularis
Rt Reticular formation
VII Facial nucleus

THALAMUS
CM Central medial nucleus
Hab Habenula
IAM Interanteromedial nucleus
IMD Intermediodorsal nucleus
LP Lateral posterior nucleus
LT Lateral terminal nucleus of the accessory optic tract
MD Mediodorsal nucleus
MG Medial geniculate nucleus
MGm Medial geniculate nucleus, medial part
PaC Paracentral nucleus
PaV Paraventricular nucleus
Pf Parafascicular nucleus
PIN Posterior intralaminar nucleus
PLi Posterior limitans nucleus
PM Posteromedian nucleus
PoM Posterior thalamic complex, medial group
PP Peripeduncular nucleus
PT Paratenial nucleus
RE Reuniens nucleus
SG Suprageniculate nucleus
SN Substantia nigra
SPf Subparafascicular nucleus
sTh Nucleus subthalamicus
VM Ventromedial nucleus
VP Ventral posterior nucleus
ZI Zona inserta

HYPOTHALAMUS
Arc Nucleus arcuatus
AH Anterior hypothalamic area/nucleus
DM Dorsomedial nucleus
LH Lateral hypothalamus
PaV Paraventricular nucleus
PeV Periventricular nucleus
PH Posterior hypothalamic area/nucleus
preM Premamillary nucleus
pFo Perifornical area
PO Preoptic area/nucleus
RCh Retrochiasmatic area
SCh Suprachiasmatic nucleus
sM Supramamillary nucleus
SO Supraoptic nucleus
TC Tuber cinereum
tM Tuberomamillary nucleus
Tu Tuberal nucleus
VM Ventromedial nucleus
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Table 3. Reference database for figures 3–12

1. Scalia and Winans 1975
2. de Olmos et al. 1978
3. de Olmos et al. 1985
4. Krettek and Price 1978b
5. Luskin and Price 1983a
6. Ottersen 1982
7. Pitkänen et al. 1997
8. Luskin and Price 1983b
9. Swizer et al. 1985
10. Veening 1978b
11. Post and Mai 1978
12. McDonald 1998
13. Turner and Zimmer 1984
14. Yasui et al. 1991
15. Sun et al. 1994
16. LeDoux et al. 1991
17. Romanski and LeDoux 1993
18. Mascagni et al. 1993
19. Shi and Cassell 1997
20. McDonald and Mascagni 1996
21. Shi and Cassell 1999
22. Wyss 1981
23. Swanson and Kohler 1986
24. Cameras and Swanson 1992
25. Cullinan et al. 1993
26. Van Groen and Wyss 1990b
27. Phillips and LeDoux 1992
28. Hurley et al. 1991
29. Sesack et al. 1989
30. Brog et al. 1993
31. McDonald et al. 1996
32. Krettek and Price 1977a
33. McIntyre et al. 1996
34. Christensen and Frederickson 1998
35. Shi and Casell 1998a
36. Pikkarainen et al. 1999
37. Sarter and Markowitsch 1984
38. McDonald and Jackson 1987
39. Kita and Kitai 1990
40. McDonald 1991a
41. Shinonaga et al. 1994
42. Conde et al. 1995
43. Brindley-Reed et al. 1995
44. Millhouse and Uemura-Sumi 1985
45. Savander et al. 1997a
46. Personal observation
47. Wallace et al. 1989
48. Kita and Oomura 1982
49. Canteras et al. 1992a
50. Canteras et al. 1995
51. Petrovich et al. 1996
52. Krettek and Price 1974
53. Nitecka et al. 1979
54. Ottersen and Ben-Ari 1979
55. McDonald 1987a
56. Van Vulpen and Verwer 1989
57. Su and Bentevoglio 1990
58. LeDoux et al. 1990
59. Turner and Herkenham 1991
60. Ray and Price 1992
61. Moga et al. 1995
62. Namura et al. 1997

63. Linke et al. 1999
64. Kemppainen and Pitkänen 1998
65. Ottersen 1980
66. Sarter and Markowitsch 1983
67. Krieger et al. 1979
68. Krettek and Price 1978a
69. Ono et al. 1985
70. McDonald 1987b
71. Price et al. 1991
72. Canteras et al. 1992b
73. Canteras et al. 1994
74. Risold et al. 1994
75. Gray et al. 1989
76. Previtt and Herman 1998
77. Sun et al. 1991
78. Datta et al. 1998
79. Post and Mai 1980
80. Weller and Smith 1982
81. Russchen and Price 1984
82. Schmued et al. 1989
83. McDonald 1991b
84. Berendse et al. 1992
85. Wright and Groenewegen 1995
86. Kirouac and Ganguly 1995
87. Wright and Groenewegen 1996
88. Wright et al. 1996
89. Deacon et al. 1983
90. Takagishi and Chiba 1991
91. Kelley et al. 1982
92. Bacon et al. 1996
93. Krettek and Price 1977b
94. Beckstead 1978
95. Caffe et al. 1987
96. Van Groen and Wyss 1990a
97. Calderazzo et al. 1996
98. McDonald and Mascagni 1997
99. Luiten et al. 1985
100. Woolf and Butcher 1982
101. Grove 1988a
102. Grove 1988b
103. Ottersen 1981
104. Gray 1990
105. Danielson et al. 1989
106. Rosen et al. 1991
107. Vertes 1991
108. Bernard et al. 1993
109. Petrovich and Swanson 1997
110. Bianchi et al. 1998
111. Saper and Loewy 1980
112. Krukoff et al. 1993
113. Vertes et al. 1995
114. Shi and Cassell 1998b
115. Van Bockstaele et al. 1996
116. Pickel et al. 1995
117. Vankova et al. 1992
118. Bernard et al. 1989b
119. Veening 1978a
120. Nitecka et al. 1980
121. Simerly and Swanson 1986
122. Nitecka 1981
123. Behan and Haberly 1999
124. Price et al. 1973
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Figure 4. Afferent, intra-amygdaloid and efferent connections of the basal nucleus. Only the moderate-to-heavy projections are indicated

the entorhinal cortex, which is partly included in the
AE subfield of the entorhinal cortex by Insausti et al.
[40], is often considered to be the amydalopiriform
transition area [89, 129]. This area provides a robust
projection to the lateral division of the central nu-
cleus [42, 72]. According to our recent observations
[Jolkkonen and Pitkänen, unpublished], this area does

not project to the dentate gyrus, which is consid-
ered a hallmark for the connectivity of the entorhi-
nal cortex and this therefore suggests that the heavy
input to the lateral division of the central nucleus
does not originate in the entorhinal cortex. Other
projections terminating in the central nucleus include
inputs from the bed nucleus of the stria terminalis,
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the substantia innominata, the thalamus (paraven-
tricular nucleus), the hypothalamus (premamillary
nucleus and lateral hypothalamic area) and the pons
(nucleus parabrachialis and nucleus subceruleus).

Intra-amygdaloid connections. The central nu-
cleus converges inputs from almost all other amygda-
loid nuclei. These include the lateral, basal, accesso-

ry basal, medial and anterior cortical nuclei, as well
as the amygdalohippocampal area. It does not, how-
ever, provide any substantial inputs back to other
amygdaloid regions. The central nucleus receives
projections from the contralateral amygdala, includ-
ing the basal and anterior cortical nuclei as well as
the nucleus of the lateral olfactory tract.
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Projections from the central nucleus. Conspicu-
ously, the central nucleus does not project to cortical
areas. It does provide substantial inputs to the bed
nucleus of the stria terminalis, the substantia innomi-
nata and the substantia nigra. It provides the most
prominent and widespread amygdaloid projections to
the brain stem, which terminate in the parabrachial

nucleus, the locus ceruleus, mesencephalic nucleus of
the trigeminal nerve, the nucleus reticularis pontis
caudalis and the nucleus tractus solitarius. Also, projec-
tions to many of the hypothalamic nuclei are substantial,
including those to the paraventricular nucleus, the lateral
hypothalamic area, the preoptic area, the perifornical
region, tuber cinereum and the retrochiasmatic area.
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Medial nucleus
Projections to the medical nucleus. The con-

nectivity of the medial nucleus is summarised in Fig-
ure 7. The heaviest cortical projections to the medial
nucleus originate in the agranular insula and the in-
fralimbic cortex. Projections from the medial tem-
poral lobe memory system are meagre, including only

a projection from the temporal subiculum. The bed
nucleus of the stria terminalis and the endopiriform
nucleus project to the medial nucleus. Other major
inputs originate in the premamillary and ventrome-
dial nuclei of the hypothalamus.

Intra-amygdaloid connections. The medial nu-
cleus receives inputs from the lateral and accessory
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Figure 7. Afferent, intra-amygdaloid and efferent connections of the medial nucleus. Only the moderate-to-heavy projections are indicated
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basal nuclei as well as from the amygdalohippocam-
pal area and the posterior cortical nucleus. The intra-
amygdaloid outputs are widespread and terminate
in the lateral, accessory basal, central, anterior corti-
cal and posterior cortical nuclei, as well as in the
amygdalohippocampal area and the bed nucleus of
the accessory olfactory tract. The medial nucleus re-
ceives inputs from several contralateral amygdaloid
areas, including the nucleus of the lateral olfactory
tract, the accessory basal nucleus, the periamygdal-
oid cortex and the posterior cortical nucleus.

Projections from the medial nucleus. The me-
dial nucleus projects to several levels of the olfacto-
ry system including the caudal aspects of the piri-
form cortex, the accessory olfactory bulb and the
endopiriform nucleus. The medial nucleus also
projects heavily to the bed nucleus of stria termina-
lis and the lateral septum. The entorhinal cortex also
receives a projection. Substantial projections are di-
rected to the paraventricular, reuniens and mediodor-
sal nuclei of the thalamus. Finally, several hypotha-
lamic areas are heavily innervated by the medial nu-
cleus. These include the paraventricular nucleus,
periventricular nucleus, posterior and lateral hypo-
thalamic areas, tuberal nucleus, supraoptic nucleus,
preoptic area, ventromedial nucleus, premamillary
nucleus and tuber cinereum.

Anterior cortical nucleus
Projections to the anterior cortical nucleus. The

connectivity of the anterior cortical nucleus is sum-
marised in Figure 8. Inputs from the sensory-related
cortex originate in the agranular and dysgranular in-
sula. The prefrontal input originates in the infralimbic
cortex and ventral agranular insula. Olfactory informa-
tion comes from the piriform cortex and the endopiri-
form nucleus. The ventral subiculum is the only region
in the hippocampal formation known to project to the
anterior cortical nucleus. Other moderate-to-heavy in-
puts originate in the paraventricular nucleus of the
thalamus and the parabrachial nucleus in the pons.

Intra-amygdaloid connections. The heaviest
intra-amygdaloid inputs to the anterior cortical nu-
cleus originate in the basal and medial nuclei. The
anterior cortical nucleus projects to the central and
basal nuclei. It also projects to the contralateral cen-
tral nucleus.

Projections from the anterior cortical nucleus.
The only cortical area that receives a substantial in-
put from the anterior cortical nucleus is the piriform
cortex. Other projections terminate in the bed nu-
cleus of stria terminalis, substantia innominata and
the lateral hypothalamus.

Periamygdaloid cortex
Projections to the periamygdaloid cortex. The

connectivity of the periamygdaloid cortex is sum-
marised in Figure 9. The agranular insula, the per-
irhinal cortex and the piriform cortex provide mod-
erate inputs to the periamygdaloid cortex. Also, there
are substantial projections from the infralimbic cor-
tex. Another projection originates in the nucleus of
the diagonal band and the endopiriform nucleus.

Intra-amygdaloid connections. The lateral and
accessory basal nuclei provide substantial projections
to the periamygdaloid cortex. The periamygdaloid
cortex provides a heavy reciprocal connection back
to the lateral nucleus. It also projects to the con-
tralateral periamygdaloid cortex, the medial nucle-
us and the posterior cortical nucleus.

Projections from the periamygdaloid cortex.
The periamygdaloid cortex provides substantial pro-
jections to several regions of the frontal cortex, in-
cluding the infralimbic cortex, the dorsal peduncu-
lar cortex, the tenia tecta and the ventral agranular
insula. It also provides an input to the entorhinal cor-
tex as well as to the olfactory system, including the
piriform cortex, the olfactory tubercle and the endopir-
iform nucleus.

Posterior cortical nucleus
Projections to the posterior cortical nucleus. The

connectivity of the posterior cortical nucleus is sum-
marised in Figure 10. The posterior cortical nucleus
receives inputs from the entorhinal cortex. Substan-
tial projections also originate in several olfactory-re-
lated areas including the piriform cortex, the acces-
sory olfactory bulb and the endopiriform nucleus.

Intra-amygdaloid connections. The most sub-
stantial intra-amygdaloid projections come from the
lateral, accessory basal and medial nuclei. The pos-
terior cortical nucleus projects to the medial nucle-
us, periamygdaloid cortex and the bed nucleus of
the accessory olfactory tract. It projects contralater-
ally to the posterior cortical nucleus, medial nucleus
and the amygdalohippocampal area. The posterior
cortical nucleus also receives an input from the con-
tralateral periamygdaloid cortex.

Projections from the posterior cortical nucleus.
The posterior cortical nucleus projects back to sever-
al levels of the olfactory system. These include the
piriform cortex, the accessory olfactory bulb, the ol-
factory tubercle and the endopiriform nucleus.
Other substantial projections are directed to the en-
torhinal cortex, the infralimbic cortex and the agran-
ular insula. Also, the bed nucleus of the stria termi-
nalis receives an input from the posterior cortical
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nucleus, as does the temporal end of the CA1 sub-
field of the hippocampus.

Amygdalohippocampal area

Projections to the amygdalohippocampal
area. The connectivity of the amygdalohippocam-
pal area is summarised in Figure 11. Substantial
inputs originate in the medial temporal lobe mem-

ory system, including those from the temporal end
of the CA1 subfield and the subiculum. Other pro-
jections originate in the hypothalamus, including
the premamillary nucleus and the lateral hypotha-
lamic area.

Intra-amygdaloid connections. The lateral, bas-
al, accessory basal and medial nuclei as well as the
bed nucleus of the accessory olfactory tract project

Figure 8. Afferent, intra-amygdaloid and efferent connections of the anterior cortical nucleus. Only the moderate-to-heavy projections are indicated
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to the amygdalohippocampal area. It projects to the
medial and central nuclei. The amygdalohippocam-
pal area receives a contralateral input from the pos-
terior cortical nucleus.

Projections from the amygdalohippocampal
area. The amygdalohippocampal area provides sub-
stantial projections to the bed nucleus of the stria
terminalis and several hypothalamic nuclei, includ-

ing the premamillary nucleus, the preoptic area and
the ventromedial nucleus.

Nucleus of the lateral olfactory tract
Projections to the nucleus of the lateral olfac-

tory tract. The connectivity of the nucleus of the
lateral olfactory tract is summarised in Figure 12.
Overall, data about the inputs to the nucleus of the
lateral olfactory tract are meagre. It receives projec-

Figure 9. Afferent, intra-amygdaloid and efferent connections of the periamygdaloid cortex. Only the moderate-to-heavy projections are
indicated
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tions from the agranular insula, the nucleus of the
diagonal band of Broca , the olfactory tubercle, the
endopiriform nucleus and the temporal subiculum.

Intra-amygdaloid connections. The basal nu-
cleus projects to the nucleus of the lateral olfactory
tract. Intra-amygdaloid projections originating in
the nucleus of the lateral olfactory tract are poorly
described. It does, however, project contralaterally

to the nucleus of the lateral olfactory tract, the
medial nucleus and the central nucleus. It also re-
ceives a projection from the contralateral basal
nucleus.

Projections from the nucleus of the lateral ol-
factory tract. The nucleus of the lateral olfactory
tract provides moderate-to-heavy projections to sev-
eral levels of the olfactory system, including the ol-

Figure 10. Afferent, intra-amygdaloid and efferent connections of the posterior cortical nucleus. Only the moderate-to-heavy projections
are indicated
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Figure 11. Afferent, intra-amygdaloid and efferent connections of the amygdalohippocampal area. Only the moderate-to-heavy projec-
tions are indicated

factory bulb, the olfactory tubercle, the endopiriform
nucleus, as well as the Islands of Calleja.

PRINCIPLES OF ORGANISATION OF
AMYGDALOID CONNECTIONS

Investigation of the pattern of connectivity of the
amygdala with other brain areas suggests several
principles in the organisation of information flow to

and from the amygdala. As is evident from Figures 3
to12, each of the amygdaloid nuclei has a unique
set of interconnections with other brain areas. Sec-
ond, one brain area might project to several amygda-
loid nuclei in parallel. Third, one amygdaloid nucle-
us might receive information from (a) several func-
tional systems or (b) several levels of the same
functional system. Fourth, some functional systems,
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however, terminate in a selective amygdaloid region.
The parallel intra-amygdaloid circuitries probably mul-
tiply the number of iterations that each of the stimu-
lus representations will have within the amygdaloid
complex. The amygdaloid projections appear to obey
the following principles: First, one amygdaloid nucle-
us might project to several functional systems or sev-
eral levels of the same functional system in parallel.

Second, several amygdaloid nuclei might send con-
verging inputs to the same functional system. Third,
some amygdaloid nuclei project more selectively to a
few functional systems.

FUNCTIONAL IMPLICATIONS
Studies using magnetic resonance imaging volu-

metry, positron emission tomography, or histologic
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analysis of autopsy tissue demonstrate amygdaloid
damage in several human brain diseases, including
temporal lobe epilepsy [97], Alzheimer’s disease
[142], Parkinson’s disease [15], schizophrenia [106],
depression [119] and autism [6], to mention a few.
A more detailed histologic analysis of autopsy tissue
or the volumetric analysis of different amygdaloid
nuclear groups using magnetic resonance imaging
reveal some disease specificity in the „knock-out” of
amygdaloid regions. For example, the medial divi-
sion of the lateral nucleus and the parvicellular divi-
sion of the basal nucleus are the most vulnerable
amygdaloid regions in temporal lobe epilepsy [97].
The central nucleus and the periamygdaloid cortex
contain the highest densities of Lewy bodies in Par-
kinson’s disease [15]. The lateral, basal and accesso-
ry basal nuclei have the most prominent volume re-
duction in depression [119]. Finally, the basal and
accessory basal nuclei have the most pronounced
neuronal loss in Alzheimer’s disease [142]. Consid-
ering the connectional differences of various
amygdaloid nuclei with other functional systems, it
is tempting to speculate that the impairments of
amygdaloid functioning vary in different diseases
because of the variable location of the amygdaloid
lesion. One area yet to be explored is how much
damage is needed and where in the amygdala to
induce functional impairments; for example, the rec-
ognition of emotion in facial expressions. Further,
would the same damage also impair other amygda-
loid functions, such as the modulation of memory
formation by emotional experiences?
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