915 research outputs found

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Modeling of transport phenomena in continuous casting of non-dendritic billets

    No full text
    A macroscopic model for simulating the phase change process and transport of solid fraction is developed for the case of solidification during direct chill continuous casting of a non-dendritic Al-alloy billet, in presence of electromagnetic stirring. Maxwell's equations are solved to obtain the electromagnetic force field, which is incorporated in the momentum conservation equations as body force source terms. There after, the complete set of equivalent single-phase governing equations (mass, momentum, energy, species conservation and transport of solid fraction) are solved using a pressure-based finite volume method. A variable viscosity approach is employed to model fluid flow in presence of phase change. The model is first validated against some experimental and numerical results available in the literature,pertaining to the case of conventional continuous casting without any externally imposed stirring. The model predicts the temperature,velocity, species and most importantly, the solid fraction distributionin the mold. These predictions are then used for studying the influence of initial superheat, stirring intensity and cooling rate on the macroscopic behavior of the system

    Modeling of transport phenomena in continuous casting of non-dendritic billets

    No full text
    A macroscopic model for simulating the phase change process and transport of solid fraction is developed for the case of solidification during direct chill continuous casting of a non-dendritic Al-alloy billet, in presence of electromagnetic stirring. Maxwell's equations are solved to obtain the electromagnetic force field, which is incorporated in the momentum conservation equations as body force source terms. Thereafter, the complete set of equivalent single-phase governing equations (mass, momentum, energy, species conservation and transport of solid fraction) are solved using a pressure-based finite volume method. A variable viscosity approach is employed to model fluid flow in presence of phase change. The model is first validated against some experimental and numerical results available in the literature, pertaining to the case of conventional continuous casting without any externally imposed stirring. The model predicts the temperature, velocity, species and most importantly, the solid fraction distribution in the mold. These predictions are then used for studying the influence of initial superheat, stirring intensity and cooling rate on the macroscopic behavior of the system

    Numerical studies on columnar-to-equiaxed transition in directional solidification of binary alloys

    No full text
    A numerical study on columnar-to-equiaxed transition (CET) during directional solidification of binary alloys is presented using a macroscopic solidification model. The position of CET is predicted numerically using a critical cooling rate criterion reported in literature. The macroscopic solidification model takes into account movement of solid phase due to buoyancy, and drag effect on the moving solid phase because of fluid motion. The model is applied to simulate the solidification process for binary alloys (Sn-Pb) and to estimate solidification parameters such as position of the liquidus, velocity of the liquidus isotherm, temperature gradient ahead of the liquidus, and cooling rate at the liquidus. Solidification phenomena under two cooling configurations are studied: one without melt convection and the other involvin thermosolutal convection. The numerically predicted positions of CET compare well with those of experiments reported in literature. Melt convection results in higher cooling rate, higher liquidus isotherm velocities, and stimulation of occurrence of CET in comparison to the nonconvecting case. The movement of solid phase aids further the process of CET. With a fixed solid phase, the occurrence of CET based on the same critical cooling rate is delayed and it occurs at a greater distance from the chill

    A Rayleigh number based dendrite fragmentation criterion for detachment of solid crystals during solidification

    No full text
    Movement of solid crystals in the form of dendrite fragments causes severe macro-segregation in solidified products. Dendrite fragmentation in the developing mushy zone occurs as a result of remelting (causing dissolution) and subsequent breakage of dendritic side arms from the dendritic stalks. An understanding of the mechanisms of dendrite fragmentation is essential for predicting the transport of fragmented solid crystals for possible control of macro-segregation. In this work, a Rayleigh number based fragmentation criterion is developed for detachment of dendrites from the developing mushy zone, which determines the conditions favourable for fragmentation of dendrites. The Rayleigh number, defined in this paper, measures the ratio of the driving buoyancy force for the flow in the mushy zone to the retarding frictional force associated with the permeability of the mush. The criterion developed is a function of the concentration difference, liquid fraction, permeability, growth rate of mushy layer and thermophysical properties of the materia

    Numerical studies on channel formation and growth during solidification: Effect of process parameters

    No full text
    In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature

    Effects of mould filling on evolution of the solid-liquid interface during solidification

    No full text
    This work presents a numerical analysis of simultaneous mould filling and phase change for solidification in a two-dimensional rectangular cavity. The role of residual flow strength and temperature gradients within the solidifying domain, caused by the filling process, on the evolution of solidification interface are investigated. An implicit volume of fluid (VOF)-based algorithm has been employed for simulating the free surface flows during the filling process, while the model for solidification is based on a fixed-grid enthalpy-based control volume approach. Solidification modeling is coupled with VOF through User Defined Functions developed in the commercial computational fluid dynamics (CFD) code FLUENT 6.3.26. Comparison between results of the conventional analysis without filling effect and those of the present analysis shows that the residual flow resulting from the filling process significantly influences the progress of the solidification interface. A parametric study is also performed with variables such as cooling rate, filling velocity and filling configuration, in order to investigate the coupled effects of the buoyancy-driven flow and the residual flow on the solidification behavior

    Remelting of solid and its effect on macrosegregation during solidification

    No full text
    A macroscopic model for simulating local remelting during binary alloy solidification is presented. In order to model the remelting phenomenon, the modified liquid concentration during remelting is calculated by taking into account the previously frozen solid concentration profile. This procedure is integrated into an existing macroscopic solidification model, in which the complete set of volume-averaged equivalent single-phase governing equations are solved using a pressure-based finite-volume method. As case studies, simulations are performed for a binary solution of NH<SUB>4</SUB>Cl-69 wt%H<SUB>2</SUB>O and for Pb-15 wt%Sn alloy solidified in a side-cooled cavity. Predicted results with the present model are compared with experimental results available in the literature, and the agreement is found to be good

    Computational Modeling of GMAW Process for Joining Dissimilar Aluminum Alloys

    No full text
    A three-dimensional transient model is developed to solve for heat transfer, fluid flow, and species distribution during a continuous gas metal arc welding (GMAW) process for joining dissimilar aluminum alloys. The phase-change process during melting and solidification is modeled using a fixed-grid enthalpy-porositytechnique, and Scheil's model is used to determine coupling among composition, temperature, and the liquid fraction. The effect of molten droplet addition to the weld pool is simulated using a "cavity" model, in which the droplet heat and species addition to the molten pool are considered as volumetric heat and species sources, respectively, distributed in an imaginary cylindrical cavity within the molten pool. To establish the model for joining dissimilar alloys, results for joining two pieces of a similar alloy are also presented. The dissimilar welding model is demonstrated using a case study in which a plate of wrought aluminum alloy (with approximately 0.5 wt% Si) is butt-welded to an aluminum cast alloy plate (with approximately 10 wt% Si) of equal thickness using a GMAW process. Macrosegregation, along with the associated heat transfer and fluid flow phenomena and their role in the weld pool development, are discussed. The model is able to capture some of the key features of the process, such as differential heating of the two alloys, asymmetric weld pool development, mixing of the molten alloys, and the final composition after solidification
    corecore