65 research outputs found

    associations between general and abdominal adiposity and mortality in individuals with diabetes mellitus

    Get PDF
    Individuals with diabetes mellitus are advised to achieve a healthy weight to prevent complications. However, fat mass distribution has hardly been investigated as a risk factor for diabetes complications. The authors studied associations between body mass index, waist circumference, waist/hip ratio, and waist/height ratio and mortality among individuals with diabetes mellitus. Within the European Prospective Investigation into Cancer and Nutrition, a subcohort was defined as 5,435 individuals with a confirmed self-report of diabetes mellitus at baseline in 1992-2000. Participants were aged 57.3 (standard deviation, 6.3) years, 54% were men, the median diabetes duration was 4.6 (interquartile range, 2.0-9.8) years, and 22% of the participants used insulin. Body mass index, as indicator of general obesity, was not associated with higher mortality, whereas all measurements of abdominal obesity showed a positive association. Associations generally were slightly weaker in women. The strongest association was observed for waist/height ratio: In the fifth quintile, the hazard rate ratio was 1.88 (95% confidence interval: 1.33, 2.65) for men and 2.46 (95% confidence interval: 1.46, 4.14) for women. Measurements of abdominal, but not general, adiposity were associated with higher mortality in diabetic individuals. The waist/height ratio showed the strongest association. Respective indicators might be investigated in risk prediction models

    A Mendelian randomization study of circulating uric acid and type 2 diabetes

    Get PDF
    We aimed to investigate the causal effect of circulating uric acid concentrations on type 2 diabetes risk. A Mendelian randomization study was performed using a genetic score with 24 uric acid associated loci. We used data of the EPIC-InterAct case-cohort study, comprising 24,265 individuals of European ancestry from eight European countries. During a mean (SD) follow-up of 10 (4) years, 10,576 verified incident type 2 diabetes cases were ascertained. Higher uric acid associated with higher diabetes risk following adjustment for confounders, with a HR of 1.20 (95%CI: 1.11,1.30) per 59.48 µmol/L (1 mg/dL) uric acid. The genetic score raised uric acid by 17 µmol/L (95%CI: 15,18) per SD increase, and explained 4% of uric acid variation. Using the genetic score to estimate the unconfounded effect found that a 59.48 µmol/L higher uric acid concentration did not have a causal effect on diabetes (HR 1.01, 95%CI: 0.87,1.16). Including data from DIAGRAM consortium, increasing our dataset to 41,508 diabetes cases, the summary OR estimate was 0.99 (95%CI: 0.92, 1.06). In conclusion, our study does not support a causal effect of circulating uric acid on diabetes risk. Uric acid lowering therapies may therefore not be beneficial in reducing diabetes risk

    Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity.

    Get PDF
    We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterize their association with intermediate phenotypes, and to investigate their role in type 2 diabetes (T2D) risk among normal-weight, overweight, and obese individuals. We investigated the association of genetic scores with euglycemic-hyperinsulinemic clamp- and oral glucose tolerance test-based measures of insulin resistance and secretion and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight, and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs per allele [95% CI], -0.03 [-0.04, -0.01]; P = 0.004). This score was associated with lower BMI (-0.01 [-0.01, -0.0]; P = 0.02) and gluteofemoral fat mass (-0.03 [-0.05, -0.02; P = 1.4 × 10(-6)) and with higher alanine transaminase (0.02 [0.01, 0.03]; P = 0.002) and γ-glutamyl transferase (0.02 [0.01, 0.03]; P = 0.001). While the secretion score had a stronger association with T2D in leaner individuals (Pinteraction = 0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI or waist strata (Pinteraction > 0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size.The MRC-Ely Study was funded by the Medical Research Council (MC_U106179471) and Diabetes UK. We are grateful to all the volunteers, and to the staff of St. Mary’s Street Surgery, Ely and the study team. The Fenland Study is funded by the Medical Research Council (MC_U106179471) and Wellcome Trust. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for assistance with recruitment. We thank the Fenland Study Investigators, Fenland Study Co-ordination team and the Epidemiology Field, Data and Laboratory teams. DBS and RKS are funded by the Wellcome Trust, the U.K. NIHR Cambridge Biomedical Research Centre and the MRC Centre for Obesity and Related Metabolic Disease. Genotyping in ULSAM was performed by the SNP&SEQ Technology Platform in Uppsala (www.genotyping.se), which is supported by Uppsala University, Uppsala University Hospital, Science for Life Laboratory - Uppsala and the Swedish Research Council (Contracts 80576801 and 70374401). The RISC Study was supported by European Union grant QLG1-CT-2001-01252 and AstraZeneca. The RISC Study Project Management Board: B Balkau, F Bonnet, SW Coppack, JM Dekker, E Ferrannini, A Golay, A Mari, A Natali, J Petrie, M Walker. We thank all EPIC participants and staff for their contribution to the study. We thank the lab team at the MRC Epidemiology Unit for sample management and Nicola Kerrison of the MRC Epidemiology Unit for data management. Funding for the EPIC-InterAct project was provided by the EU FP6 programme (grant number LSHM_CT_2006_037197).In addition, EPIC-InterAct investigators acknowledge funding from the following agencies: PWF: Swedish Research Council, Novo Nordisk, Swedish Diabetes Association, Swedish Heart-Lung Foundation; LCG: Swedish Research Council; NS: Health Research Fund (FIS) of the Spanish Ministry of Health; Murcia Regional Government (Nº 6236); LA: We thank the participants of the Spanish EPIC cohort for their contribution to the study as well as to the team of trained nurses who participated in the recruitment; RK: German Cancer Aid, German Ministry of Research (BMBF); TJK: Cancer Research UK; PMN: Swedish Research Council; KO: Danish Cancer Society; SP: Compagnia di San Paolo; JRQ: Asturias Regional Government; OR: The Västerboten County Council; AMWS and DLvdA: Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands; RT: AIRE-ONLUS Ragusa, AVIS-Ragusa, Sicilian Regional Government; IS: Verification of diabetes cases was additionally funded by NL Agency grant IGE05012 and an Incentive Grant from the Board of the UMC Utrecht; IB: Wellcome Trust grant 098051 and United Kingdom NIHR Cambridge Biomedical Research Centre; MIM: InterAct, Wellcome Trust (083270/Z/07/Z), MRC (G0601261); ER: Imperial College Biomedical Research.This is the author accepted manuscript. The final version is available from the American Diabetes Association via http://dx.doi.org/10.2337/db14-031

    Iron Metabolism and Type 2 Diabetes Incidence

    Get PDF
    OBJECTIVE: Observational studies show an association between ferritin and type 2 diabetes (T2D), suggesting a role of high iron stores in T2D development. However, ferritin is influenced by factors other than iron stores, which is less the case for other biomarkers of iron metabolism. We investigated associations of ferritin, transferrin saturation (TSAT), serum iron, and transferrin with T2D incidence to clarify the role of iron in the pathogenesis of T2D. RESEARCH DESIGN AND METHODS: The European Prospective Investigation into Cancer and Nutrition-InterAct study includes 12,403 incident T2D cases and a representative subcohort of 16,154 individuals from a European cohort with 3.99 million person-years of follow-up. We studied the prospective association of ferritin, TSAT, serum iron, and transferrin with incident T2D in 11,052 cases and a random subcohort of 15,182 individuals and assessed whether these associations differed by subgroups of the population. RESULTS: Higher levels of ferritin and transferrin were associated with a higher risk of T2D (hazard ratio [HR] [95% CI] in men and women, respectively: 1.07 [1.01-1.12] and 1.12 [1.05-1.19] per 100 μg/L higher ferritin level; 1.11 [1.00-1.24] and 1.22 [1.12-1.33] per 0.5 g/L higher transferrin level) after adjustment for age, center, BMI, physical activity, smoking status, education, hs-CRP, alanine aminotransferase, and γ-glutamyl transferase. Elevated TSAT (≥45% vs. <45%) was associated with a lower risk of T2D in women (0.68 [0.54-0.86]) but was not statistically significantly associated in men (0.90 [0.75-1.08]). Serum iron was not associated with T2D. The association of ferritin with T2D was stronger among leaner individuals (Pinteraction < 0.01). CONCLUSIONS: The pattern of association of TSAT and transferrin with T2D suggests that the underlying relationship between iron stores and T2D is more complex than the simple link suggested by the association of ferritin with T2D.We thank all EPIC participants and staff for their contribution to the study. We thank Nicola Kerrison (MRC Epidemiology Unit, Cambridge) for managing the data for the InterAct Project. We thank Dr Felix Day (MRC Epidemiology Unit, Cambridge) for assistance with figures. Funding for the InterAct project was provided by the EU FP6 programme (grant number LSHM_CT_2006_037197). In addition, InterAct investigators acknowledge funding from the following agencies: IS, JWJB and YTvdS: Verification of diabetes cases was additionally funded by NL Agency grant IGE05012 and an Incentive Grant from the Board of the UMC Utrecht (The Netherlands); HBBdM, AMWS and DLvdA: Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); FLC: Cancer Research UK; PWF: Swedish Research Council, Novo nordisk, Swedish Heart Lung Foundation, Swedish Diabetes Association; JH, KO and AT: Danish Cancer Society; RK: Deutsche Krebshilfe; SP: Associazione Italiana per la Ricerca sul Cancro; JRQ: Asturias Regional Government; MT: Health Research Fund (FIS) of the Spanish Ministry of Health; the CIBER en Epidemiología y Salud Pública (CIBERESP), Spain; Murcia Regional Government (Nº 6236); RT: AIRE-ONLUS Ragusa, AVIS-Ragusa, Sicilian Regional Government. Biomarker measurements in the EPIC-InterAct subcohort were partially funded by a grant from the UK Medical Research Council and British Heart Foundation (EPIC-Heart: G0800270). Clara Podmore is funded by the Wellcome Trust (097451/Z/11/Z).This is the author accepted manuscript. The final version is available at http://care.diabetesjournals.org/content/early/2016/01/29/dc15-0257.abstract

    Risk of type 2 diabetes according to traditional and emerging anthropometric indices in Spain, a mediterranean country with high prevalence of obesity: results from a large-scale prospective cohort study

    Get PDF
    Background: Obesity is a major risk factor for type 2 diabetes mellitus (T2DM). A proper anthropometric characterisation of T2DM risk is essential for disease prevention and clinical risk assessement. Methods: Longitudinal study in 37 733 participants (63% women) of the Spanish EPIC (European Prospective Investigation into Cancer and Nutrition) cohort without prevalent diabetes. Detailed questionnaire information was collected at baseline and anthropometric data gathered following standard procedures. A total of 2513 verified incident T2DM cases occurred after 12.1 years of mean follow-up. Multivariable Cox regression was used to calculate hazard ratios of T2DM by levels of anthropometric variables. Results: Overall and central obesity were independently associated with T2DM risk. BMI showed the strongest association with T2DM in men whereas waist-related indices were stronger independent predictors in women. Waist-to-height ratio revealed the largest area under the ROC curve in men and women, with optimal cut-offs at 0.60 and 0.58, respectively. The most discriminative waist circumference (WC) cut-off values were 99.4 cm in men and 90.4 cm in women. Absolute risk of T2DM was higher in men than women for any combination of age, BMI and WC categories, and remained low in normal-waist women. The population risk of T2DM attributable to obesity was 17% in men and 31% in women. Conclusions: Diabetes risk was associated with higher overall and central obesity indices even at normal BMI and WC values. The measurement of waist circumference in the clinical setting is strongly recommended for the evaluation of future T2DM risk in women

    Selective serotonin reuptake inhibitor antidepressant use in first trimester pregnancy and risk of specific congenital anomalies: A European register-based study

    Get PDF
    Evidence of an association between early pregnancy exposure to selective serotonin reuptake inhibitors (SSRI) and congenital heart defects (CHD) has contributed to recommendations to weigh benefits and risks carefully. The objective of this study was to determine the specificity of association between first trimester exposure to SSRIs and specific CHD and other congenital anomalies (CA) associated with SSRI exposure in the literature (signals). A population-based case-malformed control study was conducted in 12 EUROCAT CA registries covering 2.1 million births 1995-2009 including livebirths, fetal deaths from 20 weeks gestation and terminations of pregnancy for fetal anomaly. Babies/fetuses with specific CHD (n = 12,876) and non-CHD signal CA (n = 13,024), were compared with malformed controls whose diagnosed CA have not been associated with SSRI in the literature (n = 17,083). SSRI exposure in first trimester pregnancy was associated with CHD overall (OR adjusted for registry 1.41, 95% CI 1.07-1.86, fluoxetine adjOR 1.43 95% CI 0.85-2.40, paroxetine adjOR 1.53, 95% CI 0.91-2.58) and with severe CHD (adjOR 1.56, 95% CI 1.02-2.39), particularly Tetralogy of Fallot (adjOR 3.16, 95% CI 1.52-6.58) and Ebstein's anomaly (adjOR 8.23, 95% CI 2.92-23.16). Significant associations with SSRI exposure were also found for ano-rectal atresia/stenosis (adjOR 2.46, 95% CI 1.06-5.68), gastroschisis (adjOR 2.42, 95% CI 1.10-5.29), renal dysplasia (adjOR 3.01, 95% CI 1.61-5.61), and clubfoot (adjOR 2.41, 95% CI 1.59-3.65). These data support a teratogenic effect of SSRIs specific to certain anomalies, but cannot exclude confounding by indication or associated factors

    Rare coding variants and X-linked loci associated with age at menarche.

    Get PDF
    More than 100 loci have been identified for age at menarche by genome-wide association studies; however, collectively these explain only ∼3% of the trait variance. Here we test two overlooked sources of variation in 192,974 European ancestry women: low-frequency protein-coding variants and X-chromosome variants. Five missense/nonsense variants (in ALMS1/LAMB2/TNRC6A/TACR3/PRKAG1) are associated with age at menarche (minor allele frequencies 0.08-4.6%; effect sizes 0.08-1.25 years per allele; P<5 × 10(-8)). In addition, we identify common X-chromosome loci at IGSF1 (rs762080, P=9.4 × 10(-13)) and FAAH2 (rs5914101, P=4.9 × 10(-10)). Highlighted genes implicate cellular energy homeostasis, post-transcriptional gene silencing and fatty-acid amide signalling. A frequently reported mutation in TACR3 for idiopathic hypogonatrophic hypogonadism (p.W275X) is associated with 1.25-year-later menarche (P=2.8 × 10(-11)), illustrating the utility of population studies to estimate the penetrance of reportedly pathogenic mutations. Collectively, these novel variants explain ∼0.5% variance, indicating that these overlooked sources of variation do not substantially explain the 'missing heritability' of this complex trait.UK sponsors (see article for overseas ones): This work made use of data and samples generated by the 1958 Birth Cohort (NCDS). Access to these resources was enabled via the 58READIE Project funded by Wellcome Trust and Medical Research Council (grant numbers WT095219MA and G1001799). A full list of the financial, institutional and personal contributions to the development of the 1958 Birth Cohort Biomedical resource is available at http://www2.le.ac.uk/projects/birthcohort. Genotyping was undertaken as part of the Wellcome Trust Case-Control Consortium (WTCCC) under Wellcome Trust award 076113, and a full list of the investigators who contributed to the generation of the data is available at www.wtccc.org.uk ... The Fenland Study is funded by the Wellcome Trust and the Medical Research Council, as well as by the Support for Science Funding programme and CamStrad. ... SIBS - CRUK ref: C1287/A8459 SEARCH - CRUK ref: A490/A10124 EMBRACE is supported by Cancer Research UK Grants C1287/A10118, C1287/A16563 and C1287/A17523. Genotyping was supported by Cancer Research - UK grant C12292/A11174D and C8197/A16565. Gareth Evans and Fiona Lalloo are supported by an NIHR grant to the Biomedical Research Centre, Manchester. The Investigators at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust are supported by an NIHR grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant C5047/A8385. ... Generation Scotland - Scottish Executive Health Department, Chief Scientist Office, grant number CZD/16/6. Exome array genotyping for GS:SFHS was funded by the Medical Research Council UK. 23andMe - This work was supported in part by NIH Award 2R44HG006981-02 from the National Human Genome Research Institute.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/ncomms875

    Baseline and lifetime alcohol consumption and risk of differentiated thyroid carcinoma in the EPIC study

    Get PDF
    Background: Results from several cohort and case–control studies suggest a protective association between current alcohol intake and risk of thyroid carcinoma, but the epidemiological evidence is not completely consistent and several questions remain unanswered. Methods: The association between alcohol consumption at recruitment and over the lifetime and risk of differentiated thyroid carcinoma was examined in the European Prospective Investigation into Cancer and Nutrition. Among 477 263 eligible participants (70% women), 556 (90% women) were diagnosed with differentiated thyroid carcinoma over a mean follow-up of 11 years. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using multivariable Cox proportional hazards models. Results: Compared with participants consuming 0.1–4.9 g of alcohol per day at recruitment, participants consuming 15 or more grams (approximately 1–1.5 drinks) had a 23% lower risk of differentiated thyroid carcinoma (HR=0.77; 95% CI=0.60–0.98). These findings did not differ greatly when analyses were conducted for lifetime alcohol consumption, although the risk estimates were attenuated and not statistically significant anymore. Similar results were observed by type of alcoholic beverage, by differentiated thyroid carcinoma histology or according to age, sex, smoking status, body mass index and diabetes. Conclusions: Our study provides some support to the hypothesis that moderate alcohol consumption may be associated with a lower risk of papillary and follicular thyroid carcinomas
    corecore