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Rare coding variants and X-linked loci associated
with age at menarche
Kathryn L. Lunetta et al.#

More than 100 loci have been identified for age at menarche by genome-wide association

studies; however, collectively these explain only B3% of the trait variance. Here we test two

overlooked sources of variation in 192,974 European ancestry women: low-frequency protein-

coding variants and X-chromosome variants. Five missense/nonsense variants (in ALMS1/

LAMB2/TNRC6A/TACR3/PRKAG1) are associated with age at menarche (minor allele fre-

quencies 0.08–4.6%; effect sizes 0.08–1.25 years per allele; Po5� 10�8). In addition, we

identify common X-chromosome loci at IGSF1 (rs762080, P¼ 9.4� 10� 13) and FAAH2

(rs5914101, P¼4.9� 10� 10). Highlighted genes implicate cellular energy homeostasis, post-

transcriptional gene silencing and fatty-acid amide signalling. A frequently reported mutation

in TACR3 for idiopathic hypogonatrophic hypogonadism (p.W275X) is associated with 1.25-

year-later menarche (P¼ 2.8� 10� 11), illustrating the utility of population studies to estimate

the penetrance of reportedly pathogenic mutations. Collectively, these novel variants explain

B0.5% variance, indicating that these overlooked sources of variation do not substantially

explain the ‘missing heritability’ of this complex trait.
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A
ge at menarche, the onset of first menstruation in females,
indicates the start of reproductive maturity and is a
commonly reported marker of pubertal timing. One

hundred and six genomic loci for this highly heritable trait have
been mapped by genome-wide association studies (GWAS),
implicating many previously unsuspected mechanisms1.
However, to date that approach has been limited to
consideration of only those genetic variants captured by
autosomal HapMap2 reference panels. In particular, like most
GWAS for other complex traits, previous GWAS for age at
menarche provided poor coverage for low-frequency variants and
omitted sex chromosome data.

Here we report a dual strategy for assessing genetic variation
overlooked by those prior efforts: low-frequency protein-coding
variants genotyped by large-scale exome-focussed arrays and
high-density X-chromosome single-nucleotide polymorphism
(SNP) genotyping and imputation. We identify several new
associations between rare protein-coding and X-linked variants
with age at menarche in women of European ancestry.
The findings implicate new mechanisms that regulate puberty
timing, but collectively these novel variants explained only
B0.5% of the variance, indicating that these often overlooked
sources of variation that do not substantially explain the ‘missing
heritability’ of this complex trait.

Results
From the exome array studies, 61,734 low-frequency (minor allele
frequency (MAF) o5%) variants passed quality-control (QC)
criteria in a combined sample of up to 76,657 women of
European ancestry from 19 studies (Supplementary Table 1).
Gene-based burden and SKAT tests that aggregate the effects of
variants with MAFo1% yielded no significant associations with
age at menarche. A linear regression test was used to derive all
P values obtained in this study. Meta-analysis of individual
variant associations with questionnaire-reported variation in age
at menarche (restricted to the ages of 9–17 years) in this discovery
phase identified one signal at genome-wide statistical significance
(Po5� 10� 8); this was a rare missense variant in the Alström’s
syndrome gene (ALMS1, rs45501594, p.T3544S, MAF 1%;
P¼ 4.6� 10� 10). For follow-up testing in up to 116,317
independent women of European ancestry from the deCODE
(Diabetes Epidemiology: Collaborative analysis of Diagnostic
criteria in Europe ) and 23andMe studies, we selected rs45501594
and 23 other variants that met the following criteria: protein
coding, present in over half of the exome array studies, and with
association Po5� 10� 4. In the follow-up samples, 7 of the
20 variants that passed QC showed directionally concordant
confirmatory associations with Po0.05, of which five
reached genome-wide significance in a combined meta-analysis
of discovery phase and follow-up data (Table 1, Fig. 1,
Supplementary Fig. 1). No significant heterogeneity between
studies was observed at any of these loci (Supplementary Fig. 2).

The rare missense variant in ALMS1 (rs45501594,
Supplementary Fig. 3) remained the strongest signal identified
using exome array studies (combined: P¼ 6.8� 10� 20). In the
follow-up samples, each rare allele was associated with 0.23-year-
later age at menarche, an effect size more than double that of any
genetic variant previously reported for puberty timing in the
general population. This strong signal was not detected by the
previous HapMap2-based GWAS as it is poorly tagged by
common SNPs in that reference panel (maximum proxy SNP,
r2¼ 0.24). Deleterious mutations in this gene cause Alström’s
syndrome (OMIM no. 203800), a rare, autosomal-recessive
disorder characterized by cone–rod dystrophy, sensorineural
hearing loss, dilated cardiomyopathy, childhood obesity, insulin
resistance, diabetes mellitus, hypogonadotropic hypogonadism in

males, menstrual irregularities and early puberty in females, and
short stature in adulthood2. Hypogonadism was also invariably
observed in an ALMS1 gene-trapped mouse model3.

The variant with largest effect was a rare stop-gain mutation
in the tachykinin receptor 3 gene (TACR3; rs144292455,
MAF¼ 0.08%, combined P¼ 2.8� 10� 11, Supplementary Fig. 3);
in follow-up samples each rare allele was associated with 1.25-
year-later age at menarche. Common HapMap2 SNPs at the
TACR3 locus were previously associated with age at menarche1;
however, the rare variant rs144292455 is not tagged by the
HapMap2 or conventional 1000G imputation (it was directly
genotyped in 23andMe and was imputed in deCODE). Statistical
independence was confirmed by observing significant association
with the common TACR3 SNP in a sensitivity analysis within a
participating study (Women’s Genome Health Study (WGHS),
Supplementary Table 1) that excluded rare allele carriers. The
rare allele causes a premature stop codon (p.W275X) in the fifth
transmembrane segment of the 465 amino-acid receptor for the
neuropeptide neurokinin B, and is the most frequently reported
TACR3 mutation in the rare reproductive disorder idiopathic
hypogonadotropic hypogonadism (idiopathic hypogonadotropic
hypogonadism (IHH), OMIM no. 614840)4. Both homozygous
and heterozygous p.W275X variants have been reported in male
IHH cases with features of ‘early androgen deficiency’; however,
notably the heterozygous cases showed evidence of spontaneous
neuroendocrine recovery. Our findings suggest that heterozygous
p.W275X variants contribute to the normal variation in puberty
timing, whereas homozygous inheritance or possibly compound
heterozygosity is required for IHH.

A low-frequency missense variant in the LAMB2 gene was
associated with 0.08-year-later age at menarche (rs35713889,
p.G914R, MAF 4%; P¼ 1.1� 10� 11; Supplementary Fig. 3). In
the same region (3p21.31) we previously reported a HapMap2
GWAS locus for age at menarche (locus 19a and 19b in ref. 1);
however, the low-frequency variant rs35713889 is poorly tagged
by common HapMap2 SNPs (the best proxy rs1134043, r2¼ 0.24,
was reportedly not associated with age at menarche: P¼ 0.35
(ref. 1)). The strongest reported1 HapMap2 signal at this locus is
only weakly correlated with rs35713889 (rs3870341, MAF¼ 26%;
r2¼ 0.07, distance 422 kb), and both signals remained significant
when jointly tested in a follow-up sample of 76,831 women
from the 23andMe study (in separate models: rs35713889:
b¼ 0.08 years per allele, P¼ 0.0001 and rs3870341: b¼ 0.04,
P¼ 4.5� 10� 5; in the joint model: rs35713889: b¼ 0.06,
P¼ 0.004 and rs3870341: b¼ 0.03, P¼ 0.001). LAMB2 encodes
one of 15 subunits of Laminin, an extracellular matrix
glycoprotein with a key role in the attachment, migration and
organization of cells into tissues during embryonic development.
Rare recessive mutations in LAMB2 cause Pierson’s syndrome
(OMIM no. 609049), a disorder characterized by congenital
nephrotic syndrome and ocular anomalies, typically with
microcoria5; neurological abnormalities are also described likely
because of cortical laminar disorganization6. Common variants
in/near other Laminin genes have been reported for a broad range
of complex traits, including type 2 diabetes7, refractive error8,
colorectal cancer9, IgG glycosylation10, ulcerative colitis11 and
coffee consumption12.

A low-frequency missense variant in the TNRC6A gene was
associated with later age at menarche (rs113388806; p.Q1112H;
MAF 4.7%; b¼ 0.08 years per allele; P¼ 1.1� 10� 11;
Supplementary Fig. 3). This signal was only moderately well
tagged by common HapMap2 SNPs (best proxy: rs12447003,
r2¼ 0.36, reported association with age at menarche: P¼ 0.0005
(ref. 1)). TNRC6A encodes an Argonaute-navigator protein,
responsible for post-transcriptional gene silencing through RNA
interference and microRNA pathways13. This finding further
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extends the range of epigenetic mechanisms implicated in the
regulation of puberty14.

A low-frequency missense variant in PRKAG1 was associated
with earlier age at menarche (rs1126930; p.T98S; MAF 3.4%;
b¼ � 0.09 years per allele, P¼ 9.6� 10� 11; Supplementary
Fig. 3). This low-frequency variant is only moderately well tagged
by common HapMap2 SNPs (max r2¼ 0.36), which reportedly
showed subgenome-wide significant association with age at
menarche (rs11837234, P¼ 3.1� 10� 6)1. This PRKAG1
missense variant is in the same locus as, but not correlated to,
a reported1 common signal for age at menarche (rs7138803,
848 kb apart, r2¼ 0.02). PRKAG1 encodes the gamma-1
regulatory subunit of AMP-activated protein kinase, which
senses and maintains cellular energy homeostasis by promoting
fatty-acid oxidation and inhibiting fatty-acid synthesis; PRKAG1
is overexpressed in ovarian carcinomas15 and is somatically
mutated in colorectal cancers16.

Our second genotyping approach considered X-chromosome
GWAS SNPs in up to 76,831 women of European ancestry from
the 23andMe study17. Imputation was performed against the
1000 Genomes reference, yielding genotype data for B266,000
X-chromosome variants (MAF41%). Two signals, in/near IGSF1
and FAAH2, reached genome-wide significance for association
with age at menarche and both associations were confirmed in
39,486 independent women of European ancestry from the
deCODE study.

Common variants in and near IGSF1 were robustly associated
with age at menarche (lead SNP: rs762080, MAF¼ 24%; b¼ 0.06
years per allele, P¼ 9.4� 10� 13; Supplementary Fig. 4). IGSF1
encodes the immunoglobulin superfamily member 1, which is a
plasma membrane glycoprotein highly expressed in the pituitary
gland and testis. Rare X-linked mutations in IGSF1 were recently
described to cause central hypothyroidism, hypoprolactinemia,

delayed puberty and macro-orchidism in males (OMIM no.
300888)18,19. Heterozygous female carriers reportedly had normal
age at menarche; however, 6/18 had central hypothyroidism and
4/18 underwent oophorectomy for ovarian cysts19.

The second X-chromosome locus, in Xp11.21 (lead SNP
rs5914101 is intronic in FAAH2, MAF 24%, b¼ 0.05 years per
allele, P¼ 1.9� 10� 10; Supplementary Fig. 4), lies within the
critical region for Turner’s syndrome, which is the most common
cause of primary ovarian insufficiency20. FAAH2 encodes fatty-
acid amide hydrolase 2. This enzyme catalyses the hydrolysis and
degradation of bioactive fatty-acid amides, a large class of
endogenous signalling lipids including the endocannabinoids,
which modulate several physiological processes, including
feeding, inflammation, pain, sleep and various reproductive
processes, including hypothalamic gonadotropin-releasing
hormone secretion21,22.

We sought to further functionally characterize the seven genes
implicated by these analyses using expression data on 53 tissue
types from the Genotype-Tissue Expression consortium23. All
seven genes showed high relative tissue expression in the ovary
and/or brain (specifically the hypothalamus; Supplementary
Fig. 5); however, none of the lead SNPs showed a significant
association with mRNA transcript abundance. None of the
identified variants were associated with body mass index in
74,071 adults from the deCODE study (all P40.05), indicating
that their effects on puberty timing are unlikely to be mediated by
body mass index.

Discussion
In summary, by large-scale analysis of genetic variation not
captured by previous GWAS for age at menarche, we identified
several low-frequency exonic variants of relatively large effect and
two common X-chromosome signals. The implicated genes

Table 1 | Association statistics for the novel low-frequency and X-chromosome variants.

Gene SNP Location Alleles* Discovery Follow-up Combined

Effect (s.e.) P N Effect (s.e.) | VEw P N Effect (s.e.) P N

Exome array
ALMS1 rs45501594 2p13.1 G/C/1.1% 0.26 (0.04) 4.6E� 10 57,867 0.23 (0.03) | 0.12% 2.2E–11 116,317 0.24 (0.03) 6.8E–20 174,184
LAMB2 rs35713889 3p21.31 T/C/4.4% 0.11 (0.02) 5.0E�07 58,695 0.08 (0.02) | 0.04% 2.2E–06 116,317 0.09 (0.01) 1.0E–11 175,012
TNRC6A rs113388806 16p12.1 T/A/4.7% 0.09 (0.02) 1.7E�05 76,657 0.08 (0.02) | 0.04% 1.4E–07 116,317 0.08 (0.01) 1.1E–11 192,974
TACR3 rs144292455 4q24 T/C/0.08% 0.71 (0.15) 1.3E�06 68,487 1.25 (0.25) | 0.20% 8.0E–07 116,317 0.84 (0.13) 2.8E–11 184,804
PRKAG1 rs1126930 12q13.12 C/G/3.4% �0.11 (0.02) 4.4E�07 76,657 �0.08 (0.02) | 0.02% 3.6E–05 116,317 �0.09 (0.01) 9.6E–11 192,974

1000G X-chromosome
IGSF1 rs762080 Xq26.2 A/C/24% �0.07 (0.01) 4.1E� 12 76,831 �0.04 (0.01) | 0.04% 6.7E–03 39,486 �0.06 (0.008) 9.4E–13 116,317
FAAH2 rs5914101 Xp11.21 A/G/24% �0.07 (0.01) 1.1E�09 76,831 �0.03 (0.01) | 0.03% 2.0E–02 39,486 �0.05 (0.009) 4.9E–10 116,317

deCODE, Diabetes Epidemiology: Collaborative analysis of Diagnostic criteria in Europe; SNP, single-nucleotide polymorphism; VE, variance explained.
*Refers to effect allele/other allele/effect allele frequency.
wBeta (standard error) from the combined replication samples | VE in the deCODE study. Units are on a 1-year scale.
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Figure 1 | A ‘Manhattan plot’ of menarche association statistics for the genotyped low-frequency exome array variants. Test statistics are shown from

the exome-chip discovery-phase samples, with the exception of the five labelled loci that indicate results from the combined discovery and replication set.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8756 ARTICLE

NATURE COMMUNICATIONS | 6:7756 | DOI: 10.1038/ncomms8756 | www.nature.com/naturecommunications 3

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


provide new insights into the mechanisms that link energy
homeostasis to puberty timing, indicate possible roles of RNA-
mediated gene silencing and fatty-acid amide signalling, and link
genes behind rare autosomal, X-linked and syndromic disorders
of puberty to normal variation in reproductive timing. Our
findings using dense exome arrays in large unselected populations
are informative for the clinical interpretation of heterozygous
TACR3 variants in patients with rare disorders. In the deCODE
study these novel variants collectively explained only 0.5% of the
variance in age at menarche, suggesting that these often
overlooked sources of genetic variation do not contribute
disproportionately to the missing heritability of this complex
trait. While variants with MAF below 1% are likely not well
represented here, our findings indicate that, similar to other
complex traits24, the genetic architecture of puberty timing is
likely dominated by the additive effects of hundreds or even
thousands of variants, each with relatively small effect.

Methods
Exome array discovery analysis. Exome array genotype data were generated
across 19 studies in up to 76,657 women of genetically determined European
ancestry with questionnaire-reported age at menarche between ages 9 and 17 years
(Supplementary Table 1). Exome array genotype calling for three studies
(Framingham Heart Study (FHS), the Atherosclerosis Risk in Communities (ARIC)
and Rotterdam Study (RS); totalling B9,000 women) was performed jointly as part
of the CHARGE joint calling protocol25, which included over 62,000 individuals.
Four additional studies (Cambridge Cancer, KORA, Korcula, Generation Scotland,
total NB9,700) used the cluster file made available by CHARGE to call genotypes.
Other studies followed standard calling and QC protocols for the Exome array
(Supplementary Table 2). Each contributing study ran a linear regression model on
age at menarche, adjusted for birth year and principal components derived from
genotypes, using the skatMeta/seqMeta package in R. Studies with family data
included a random effect to account for relationships. Alleles were aligned to a
common reference file before association testing (SNPInfo_HumanExome-12v1_
rev5.tsv.txt available at http://www.chargeconsortium.com/main/exomechip/) and
variants with MAF45% in the meta-analysis were excluded. We performed
gene-based testing (within seqMeta) for low-frequency variants using fixed effect
burden tests, which assume that all rare variants have the same effect direction and
size (scaled by a weight determined by allele frequency), and SKAT tests, which
assume that rare variant effects are random and can contain a mixture of null,
protective and risk rare alleles. These tests were run using three variant filters,
all of which included only variants with MAFo1%: (1) all non-synonymous;
(2) non-synonymous annotated as ‘damaging’ (conserved and predicted damaging,
see http://www.chargeconsortium.com/main/exomechip/); and (3) only loss of
function. The multiple testing adjustment included two tests � three filters �
number of genes, requiring study-wise significance threshold Po1.14� 10� 6.
For individual variants, a fixed-effects inverse variance-weighted meta-analysis
was performed across all studies using METAL (http://www.sph.umich.edu/csg/
abecasis/Metal/), with associations considered significant at a conservative
genome-wide significance threshold of Po5� 10� 8.

Exome array follow-up studies. We performed follow-up testing of selected
exome array variants in the 23andMe study (as described below) and also in 39,486
independent women of European ancestry from the deCODE study, Iceland,
who had genotypes on over 34 million variants by imputation of whole-genome
sequencing-identified SNPs and indels on Illumina SNP chip data (Supplementary
Table 1)26. Variants from both studies were required to either pass genotyping
QC (23andMe only, described below) or have imputation quality score 40.4.
X-chromosome follow-up was performed in the deCODE study alone. All
participants in all published studies provided informed consent, and the
research protocol of each study was approved by their local research ethics
committee1.

1000G X-chromosome discovery meta-analysis. X-chromosome SNP data were
generated in up to 76,831 women of European ancestry from the 23andMe
study17,27, with questionnaire-reported age at menarche between the ages of 8 and
16 years, and who were genotyped on one or more of three GWAS arrays that also
included customized content on human pathogenic variants (Supplementary
Table 1)28. 23andMe participants provided informed consent to take part in this
research under a protocol approved by the AAHRPP-accredited institutional
review board, Ethical and Independent Review Services. Before imputation, we
excluded SNPs with Hardy–Weinberg equilibrium Po10� 20, call rate o95% or
with large allele frequency discrepancies compared with European 1000 Genomes
reference data. Frequency discrepancies were identified by computing a 2� 2 table
of allele counts for European 1000 Genomes samples and 2,000 randomly sampled

23andMe customers with European ancestry, and identifying SNPs with a w2

Po10� 15. Genotype data were imputed against the March 2012 ‘v3’ release of
1000 Genomes reference haplotypes. Age at menarche was assessed by
questionnaire and recorded in 2-year-age bins, which were rescaled to 1-year effect
estimates post analysis. The validity of this approach was confirmed by the lack of
significant heterogeneity between rescaled 23andMe menarche estimates for the
123 previously identified signals and their reported effects1. Association results
were obtained from linear regression models assuming additive allelic effects. These
models included covariates for age and the top five GWAS SNP principal
components to account for residual population structure. Results were further
adjusted for a lambda genomic control value of 1.152 to correct for any residual test
statistic inflation due to population stratification. Linkage disequilibrium score
regression analysis (LDSC)29 confirmed that principle component correction
appropriately controlled for potential test statistic inflation due to population
stratification (pre-genomic control-corrected calculated intercept B1). The
reported association test P values were computed from likelihood ratio tests.

X-chromosome follow-up. Identified X-chromosome variants were replicated in
39,486 women from the deCODE study, as described above.
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