2,447 research outputs found

    XMM-Newton discovery of 2.6 s pulsations in the soft gamma-ray repeater SGR 1627-41

    Full text link
    After nearly a decade of quiescence, the soft gamma-ray repeater SGR 1627-41 reactivated on 2008 May 28 with a bursting episode followed by a slowly decaying enhancement of its persistent emission. To search for the still unknown spin period of this SGR taking advantage of its high flux state, we performed on 2008 September 27-28 a 120 ks long X-ray observation with the XMM-Newton satellite. Pulsations with P = 2.594578(6) s were detected at a higher than 6-sigma confidence level, with a double-peaked pulse profile. The pulsed fraction in the 2-12 keV range is 19% +/- 3% and 24% +/- 3% for the fundamental and the second harmonic, respectively. The observed 2-10 keV flux is 3.4E-13 erg/cm^2/s, still a factor of ~ 5 above the quiescent pre-burst-activation level, and the spectrum is well fitted by an absorbed power law plus blackbody model (photon index Gamma = 0.6, blackbody temperature kT = 0.5 keV, and absorption nH = 1.2E+23 cm^-2). We also detected a shell of diffuse soft X-ray emission which is likely associated with the young supernova remnant G337.0-0.1.Comment: Minor changes to match the final version (to appear in The Astrophysical Journal Letters). 5 pages in emulate-apj style, 1 table, 4 figures (1 color

    A multiwavelength study on the high-energy behaviour of Fermi/LAT pulsars

    Full text link
    Using archival as well as freshly acquired data, we assess the X-ray behaviour of the Fermi/LAT gamma-ray pulsars listed in the First Fermi source catalog. After revisiting the relationships between the pulsars' rotational energy losses and their X and gamma-ray luminosities, we focus on the distance-indipendent gamma to X-ray flux ratios. When plotting our Fgamma/Fx values as a function of the pulsars' rotational energy losses, one immediately sees that pulsars with similar energetics have Fgamma/Fx spanning 3 decades. Such spread, most probably stemming from vastly different geometrical configurations of the X and gamma-ray emitting regions, defies any straightforward interpretation of the plot. Indeed, while energetic pulsars do have low Fgamma/Fx values, little can be said for the bulk of the Fermi neutron stars. Dividing our pulsar sample into radio-loud and radio-quiet subsamples, we find that, on average, radio-quiet pulsars do have higher values of Fgamma/Fx, implying an intrinsec faintness of their X-ray emission and/or a different geometrical configuration. Moreover, despite the large spread mentioned above, statistical tests show a lower scatter in the radio-quiet dataset with respect to the radio-loud one, pointing to a somewhat more constrained geometry for the radio-quiet objects with respect to the radio-loud ones.Comment: 39 pages, 5 figures, 3 tables. To be published in Astrophysical Journa

    The metal contents of two groups of galaxies

    Full text link
    The hot gas in clusters and groups of galaxies is continuously being enriched with metals from supernovae and stars. It is well established that the enrichment of the gas with elements from oxygen to iron is mainly caused by supernova explosions. The origins of nitrogen and carbon are still being debated. Possible candidates include massive, metal-rich stars, early generations of massive stars, intermediate or low mass stars and Asymptotic Giant Branch (AGB) stars. In this paper we accurately determine the metal abundances of the gas in the groups of galaxies NGC 5044 and NGC 5813, and discuss the nature of the objects that create these metals. We mainly focus on carbon and nitrogen. We use spatially-resolved high-resolution X-ray spectroscopy from XMM-Newton. For the spectral fitting, multi-temperature hot gas models are used. The abundance ratios of carbon over oxygen and nitrogen over oxygen that we find are high compared to the ratios in the stars in the disk of our Galaxy. The oxygen and nitrogen abundances we derive are similar to what was found in earlier work on other giant ellipticals in comparable environments. We show that the iron abundances in both our sources have a gradient along the cross-dispersion direction of the Reflection Grating Spectrometer (RGS). We conclude that it is unlikely that the creation of nitrogen and carbon takes place in massive stars, which end their lives as core-collapse supernovae, enriching the medium with oxygen because oxygen should then also be enhanced. Therefore we favour low-and intermediate mass stars as sources of these elements. The abundances in the hot gas can best be explained by a 30-40% contribution of type Ia supernovae based on the measured oxygen and iron abundances and under the assumption of a Salpeter Initial Mass Function (IMF).Comment: Accepted for publication in A&A, 12 pages, 10 figures. Data points on which figs 4,5,8 and 9 are based are present as comment in the source fil

    X-ray Spectroscopy of the Virgo Cluster out to the Virial Radius

    Full text link
    We present results from the analysis of a mosaic of thirteen XMM-Newton pointings covering the Virgo Cluster from its center northwards out to a radius r~1.2 Mpc (~4.5 degrees), reaching the virial radius and beyond. This is the first time that the properties of a modestly sized (M_vir~1.4e14 M_sun, kT~2.3 keV), dynamically young cluster have been studied out to the virial radius. The density profile of the cluster can be described by a surprisingly shallow power-law with index 1.21+/-0.12. In the radial range of 0.3r_vir<r<r_vir, the best fit temperature drops by roughly 60 per cent. Within a radius r<450 kpc, the entropy profile has an approximate power-law form with index 1.1, as expected for gravitationally collapsed gas in hydrostatic equilibrium. Beyond r~450 kpc, however, the temperature and metallicity drop abruptly, and the entropy profile becomes flatter, staying consistently below the expected value by a factor of 2-2.5. The most likely explanation for the unusually shallow density profile and the flattening of entropy at large radius is clumping in the ICM. Our data provide direct observational evidence that the ICM is enriched by metals all the way to r_200 to at least Z=0.1 Solar.Comment: Accepted for publication in MNRA

    Spectral monitoring of RX J1856.5-3754 with XMM-Newton. Analysis of EPIC-pn data

    Full text link
    Using a large set of XMM-Newton observations we searched for long term spectral and flux variability of the isolated neutron star RX J1856.5-3754 in the time interval from April 2002 to October 2011. This is the brightest and most extensively observed source of a small group of nearby, thermally emitting isolated neutron stars, of which at least one member (RX J0720.4-3125, Hohle et al., 2010) has shown long term variability. A detailed analysis of the data obtained with the EPIC-pn camera in the 0.15-1.2 keV energy range reveals small variations in the temperature derived with a single blackbody fit (of the order of 1% around kT^inf \sim 61 eV). Such variations are correlated with the position of the source on the detector and can be ascribed to an instrumental effect, most likely a spatial dependence of the channel to energy relation. For the sampled instrumental coordinates, we quantify this effect as variations of \sim 4% and \sim 15 eV in the gain slope and offset, respectively. Selecting only a homogeneous subset of observations, with the source imaged at the same detector position, we find no evidence for spectral or flux variations of RX J1856.5-3754 from March 2005 to present-day, with limits of Delta kT^inf < 0.5% and Delta f_X < 3% (0.15-1.2 keV), with 3sigma confidence. A slightly higher temperature (kT^inf \sim 61.5 eV, compared to kT^\inf \sim 61 eV) was instead measured in April 2002. If this difference is not of instrumental origin, it implies a rate of variation \sim -0.15 eV yr^-1 between April 2002 and March 2005. The high-statistics spectrum from the selected observations is best fitted with the sum of two blackbody models, with temperatures kT_h^inf = 62.4_{-0.4}^{+0.6} eV and kT_s^\inf = 38.9_{-2.9}^{+4.9} eV, which account for the flux seen in the optical band. No significant spectral features are detected, with upper limits of 6 eV on their equivalent width.Comment: 11 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic

    The Identification of the X-ray Counterpart to PSR J2021+4026

    Get PDF
    We report the probable identification of the X-ray counterpart to the gamma-ray pulsar PSR J2021+4026 using imaging with the Chandra X-ray Observatory ACIS and timing analysis with the Fermi satellite. Given the statistical and systematic errors, the positions determined by both satellites are coincident. The X-ray source position is R.A. 20h21m30.733s, Decl. +40 deg 26 min 46.04sec (J2000) with an estimated uncertainty of 1.3 arsec combined statistical and systematic error. Moreover, both the X-ray to gamma-ray and the X-ray to optical flux ratios are sensible assuming a neutron star origin for the X-ray flux. The X-ray source has no cataloged infrared-to-visible counterpart and, through new observations, we set upper limits to its optical emission of i' >23.0 mag and r' > 25.2mag. The source exhibits an X-ray spectrum with most likely both a powerlaw and a thermal component. We also report on the X-ray and visible light properties of the 43 other sources detected in our Chandra observation.Comment: Accepted for publication in the Astrophysical Journa

    X-ray observations of the galaxy cluster Abell 2029 to the virial radius

    Full text link
    We present Suzaku observations of the galaxy cluster Abell 2029, which exploit Suzaku's low particle background to probe the ICM to radii beyond those possible with previous observations (reaching out to the virial radius), and with better azimuthal coverage. We find significant anisotropies in the temperature and entropy profiles, with a region of lower temperature and entropy occurring to the south east, possibly the result of accretion activity in this direction. Away from this cold feature, the thermodynamic properties are consistent with an entropy profile which rises, but less steeply than the predictions of purely gravitational hierarchical structure formation. Excess emission in the northern direction can be explained due to the overlap of the emission from the outskirts of Abell 2029 and nearby Abell 2033 (which is at slightly higher redshift). These observations suggest that the assumptions of spherical symmetry and hydrostatic equilibrium break down in the outskirts of galaxy clusters, which poses challenges for modelling cluster masses at large radii and presents opportunities for studying the formation and accretion history of clusters.Comment: 15 pages, 14 figures. Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    Cool core remnants in galaxy clusters

    Full text link
    X ray clusters are conventionally divided into two classes: "cool core" (CC) and "non cool core" (NCC) objects, on the basis of the observational properties of their central regions. Recent results have shown that the cluster population is bimodal (Cavagnolo et al. 2009). We want to understand whether the observed distribution of clusters is due to a primordial division into two distinct classes rather than to differences in how these systems evolve across cosmic time. We systematically search the ICM of NCC clusters in a subsample of the B55 flux limited sample of clusters for regions which have some characteristics typical of cool cores, namely low entropy gas and high metal abundance We find that most NCC clusters in our sample host regions reminiscent of CC, i. e. characterized by relative low entropy gas (albeit not as low as in CC systems) and a metal abundance excess. We have dubbed these structures "cool core remnants", since we interpret them as what remains of a cool core after a heating event (AGN giant outbursts in a few cases and more commonly mergers). We infer that most NCC clusters have undergone a cool core phase during their life. The fact that most cool core remnants are found in dynamically active objects provides strong support to scenarios where cluster core properties are not fixed "ab initio" but evolve across cosmic time.Comment: Accepted for publication in Astronomy & Astrophysics. Version with full resolution figures available at: http://www.iasf-milano.inaf.it/~rossetti/public/CCR/rossetti.pd

    OPERAS SIG on Tools for Open Scholarly Communication : White Paper 2021

    Get PDF
    This white paper is the output of the OPERAS Special Interest Group (SIG) Tools and R&amp;D for scholarly communication; it is an updated version of a previous 2018 white paper1. With a focus on scholarly publishing tools, the objectives of the SIG Tools are to: provide a landscape analysis, identify emerging trends, and list the areas of potential improvements, developments, and collaborations. Since 2018, various studies and initiatives confirmed the necessity to both coordinate the developments of tools and provide guidance to the users. Similarly, OPERAS emphasizes the importance of building the open science scholarly communication infrastructure in Social Sciences and Humanities on community driven tools. The white paper brings information on the existing tools for scholarly publishing, as well as recommendations that will support the building of such an open scholarly communication infrastructure. The paper first examines tools types, definitions, and criteria that are able to facilitate their description and selection. The tools are then analyzed according to publishing main functions. For authoring, the development of online and collaborative tools represents an interesting perspective, especially when relying on structured formats, but also increases the risk of lock-in within multi-functional proprietary services. In peer reviewing, alongside widely used commercial tools, open peer review represents an innovative area, both in terms of usage and tools. Open source tools for publishing already offer a high level of service, but face interoperability challenges with the integration of an increasing variety of third-party services. A specific section is dedicated to communicating tools allowing for comments and annotations, as such function is transversal to the others. To complement this description, the SIG tools also identified major trends that should impact the future of scholarly communication, namely: preprint servers, artificial intelligence, data papers, and user-centric developments. In conclusion, the white paper provides a list of recommendations able to address the challenges identified and to provide building blocks for the envisioned open scholarly infrastructure. The recommendations suggest: to establish user-centric criteria for tools, a tools’ observatory, a set of training materials, guidelines about publishing workflows, and collaborations with other community initiatives
    • 

    corecore