10 research outputs found

    Drivers of Holocene palsa distribution in North America

    Get PDF
    Palsas and peat plateaus are climatically sensitive landforms in permafrost peatlands. Climate envelope models have previously related palsa/peat plateau distributions in Europe to modern climate, but similar bioclimatic modelling has not been attempted for North America. Recent climate change has rendered many palsas/peat plateaus in this region, and their valuable carbon stores, vulnerable. We fitted a binary logistic regression model to predict palsa/peat plateau presence for North America by relating the distribution of 352 extant landforms to gridded modern climate data. Our model accurately classified 85.3% of grid cells that contain observed palsas/peat plateaus and 77.1% of grid cells without observed palsas/peat plateaus. The model indicates that modern North American palsas/peat plateaus are supported by cold, dry climates with large seasonal temperature ranges and mild growing seasons. We used palaeoclimate simulations from a general circulation model to simulate Holocene distributions of palsas/peat plateaus at 500-year intervals. We constrained these outputs with timings of peat initiation, deglaciation, and postglacial drainage across the continent. Our palaeoclimate simulations indicate that this climate envelope remained stationary in western North America throughout the Holocene, but further east it migrated northwards during 11.5–6.0 ka BP. However, palsa extents in eastern North America were restricted from following this moving climate envelope by late deglaciation, drainage and peat initiation. We validated our Holocene simulations against available palaeoecological records and whilst they agree that permafrost peatlands aggraded earliest in western North America, our simulations contest previous suggestions that late permafrost aggradation in central Canada was climatically-driven

    Peatland Initiation, Carbon Accumulation, and 2 ka Depth in the James Bay Lowland and Adjacent Regions

    Get PDF
    Copyright © 2014 University of Colorado at Boulder, Institute of Arctic and Alpine ResearchPeatlands surrounding Hudson and James Bays form the second largest peatland complex in the world and contain major stores of soil carbon (C). This study utilized a transect of eight ombrotrophic peat cores from remote regions of central and northern Ontario to quantify the magnitude and rate of C accumulation since peatland initiation and for the past 2000 calendar years before present (2 ka). These new data were supplemented by 17 millennially resolved chronologies from a literature review covering the Boreal Shield, Hudson Plains, and Taiga Shield bordering Hudson and James Bays. Peatlands initiated in central and northern Ontario by 7.8 ka following deglaciation and isostatic emergence of northern areas to above sea level. Total C accumulated since inception averaged 109.7 ± (std. dev.) 36.2 kg C m–2. Approximately 40% of total soil C has accumulated since 2 ka at an average apparent rate of 20.2 ± 6.9 g C m–2 yr–1. The 2 ka depths correlate significantly and positively with modern gridded climate estimates for mean annual precipitation, mean annual air temperature, growing degree-days > 0 °C, and photosynthetically active radiation integrated over days > 0 °C. There are significantly shallower depths in permafrost peatlands. Vertical peat accumulation was likely constrained by temperature, growing season length, and photosynthetically active radiation over the last 2 ka in the Hudson Bay Lowlands and surrounding regions.US National Science Foundatio

    Développement holocène et dynamique récente des tourbières minérotrophes structurées du Haut-Boréal québécois

    Get PDF
    Dans le Haut-Boréal québécois, les tourbières minérotrophes structurées semblent affectées par une dégradation relativement récente de leur surface se manifestant par la formation et l'agrandissement de mares, ainsi que par une réduction du couvert arborescent. Nous avançons l'hypothèse que la hausse des précipitations depuis le milieu du XVIIIe siècle est à l'origine de ce phénomène désigné par le néologisme aqualyse. Plusieurs profils stratigraphiques échantillonnés le long de transects longitudinaux et transversaux ont permis de documenter le développement holocène de quatre tourbières minérotrophes structurées. La datation au radiocarbone effectuée sur près de la moitié de ces profils montre que les tourbières se sont installées entre 7400 et 6500 ans cal. BP, soit immédiatement après les retraits glaciaire et marin. Les tourbières étaient alors de type minérotrophe forestière. Des conditions climatiques plus humides depuis 3000 ans cal. BP ont entraîné une hausse de la nappe phréatique et du taux d'accumulation, de même qu'un déboisement généralisé des tourbières. La confection 4e courbes isochrones et la datation dendrochronologique des arbres morts trouvés dans les mares indiquent que celles-ci se sont formées pendant le dernier millénaire et que, depuis les derniers siècles, l' aqualyse a connu un essor sans précédent, ce qui appuie notre hypothèse de départ. L'accumulation de la tourbe dans les buttes et les platières des quatre tourbières a été analysée à l'aide des plantules de mélèze et d'épinette. Les taux d'accumulation récents varient grandement d'une plantule à l'autre, mais ils tendent à diminuer avec le temps en raison de la compaction et de la décomposition. Les taux d'accumulation récents des buttes sont supérieurs à ceux des platières, mais la différence est réduite d'environ 75 % après une cinquantaine d'années. Contrairement aux taux d'accumulation à long terme obtenus par la datation 14C, les taux d'accumulation récents des secteurs où les mares sont présentes sont plus faibles que ceux des secteurs terrestres. Ce renversement de tendance est associé à un excès d'eau depuis les derniers siècles. En l'absence d'une diminution significative et prolongée des précipitations, l' aqualyse se poursuivra et continuera de compromettre la capacité de stockage du carbone dans les tourbières minérotrophes

    Palaeoecology of Sphagnum riparium (Ångström) in Northern Hemisphere peatlands: implications for peatland conservation and palaeoecological research

    No full text
    Sphagnum riparium (Ångström) is a rare constituent of modern peatland plant communities and is also very rarely found as a subfossil in peat archives. We present new data on the occurrence of Sphagnum riparium macrofossils in three Northern Hemisphere peatlands from Yellowknife (NW Canada), Abisko (N Sweden), and the Northern Ural Mountains (NW Russia). Sphagnum riparium macrofossils were present in transitional phases between rich fen and oligotrophic bog. Sphagnum riparium was a dominant species in the three sites and was found in combination with Sphagnum angustifolium, Drepanocladus sp., and vascular plants including Andromeda polifolia, Chamedaphne calyculata and Oxycoccus palustris. Testate amoebae indicate that the species occurred in wet to moderately wet conditions (water-table depth inferred from a testate amoeba transfer function model ranged between 25 and 0 cm under the peatland surface). The wet-indicator taxa Archerella flavum and Hyalosphenia papilio dominated the testate amoeba communities in peat horizons containing Sphagnum riparium. The presence of Sphagnum riparium macrofossils in peat profiles in the Northern Hemisphere can be interpreted as an indication of wet minerotrophic conditions, often corresponding to a rise in water-level and establishment of a wet habitat. Sphagnum riparium is a transient species in these peatlands and is replaced by communities dominated by more acidophilic species such as Sphagnum angustifolium, Sphagnum russowii, and Sphagnum fuscum. Our data show that although Sphagnum riparium is a transient peat-forming species, it is widespread in sub-arctic and boreal environments. The subfossil occurrence of Sphagnum riparium in the northern hemisphere may indicate that its range has increased during the Late Holocene. The conservation of Sphagnum riparium in peatlands depends on the existence of relatively short-lived transitional communities which potentially can be artificially created
    corecore