127 research outputs found

    VectorBase: a home for invertebrate vectors of human pathogens

    Get PDF
    VectorBase () is a web-accessible data repository for information about invertebrate vectors of human pathogens. VectorBase annotates and maintains vector genomes providing an integrated resource for the research community. Currently, VectorBase contains genome information for two organisms: Anopheles gambiae, a vector for the Plasmodium protozoan agent causing malaria, and Aedes aegypti, a vector for the flaviviral agents causing Yellow fever and Dengue fever

    A cis-regulatory sequence driving metabolic insecticide resistance in mosquitoes: Functional characterisation and signatures of selection

    Get PDF
    Although cytochrome P450 (CYP450) enzymes are frequently up-regulated in mosquitoes resistant to insecticides, no regulatory motifs driving these expression differences with relevance to wild populations have been identified. Transposable elements (TEs) are often enriched upstream of those CYP450s involved in insecticide resistance, leading to the assumption that they contribute regulatory motifs that directly underlie the resistance phenotype. A partial CuRE1 (Culex Repetitive Element 1) transposable element is found directly upstream of CYP9M10, a cytochrome P450 implicated previously in larval resistance to permethrin in the ISOP450 strain of Cx. quinquefasciatus, but is absent from the equivalent genomic region of a susceptible strain. Via expression of CYP9M10 in E.coli we have now demonstrated time- and NADPH-dependant permethrin metabolism, prerequisites for confirmation of a role in metabolic resistance, and through qPCR shown that CYP9M10 is >20-fold over-expressed in ISOP450 compared to a susceptible strain. In a fluorescent reporter assay the region upstream of CYP9M10 from ISOP450 drove 10x expression compared to the equivalent region (lacking CuRE1) from the susceptible strain. Close correspondence with the gene expression fold-change implicates the upstream region including CuRE1 as a cis-regulatory element involved in resistance. Only a single CuRE1 bearing allele, identical to the CuRE1 bearing allele in the resistant strain, is found throughout Sub-Saharan Africa, in contrast to the diversity encountered in non-CuRE1 alleles. This suggests a single origin and subsequent spread due to selective advantage. CuRE1 is detectable using a simple diagnostic. When applied to Cx. quinquefasciatus larvae from Ghana we have demonstrated a significant association with permethrin resistance in multiple field sites (mean Odds Ratio = 3.86) suggesting this marker has relevance to natural populations of vector mosquitoes. However, when CuRE1 was excised from the allele used in the reporter assay through fusion PCR, expression was unaffected, indicating that the TE has no direct role in resistance and hence that CuRE1 is acting only as a marker of an as yet unidentified regulatory motif in the association analysis. This suggests that a re-evaluation of the assumption that TEs contribute regulatory motifs involved in gene expression may be necessary

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control

    Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics

    Get PDF
    Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification

    Genomic Insights Into The Ixodes scapularis Tick Vector Of Lyme Disease

    Get PDF
    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retrotransposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing B57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing’, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent

    Genomic Insights Into The Ixodes scapularis Tick Vector Of Lyme Disease

    Get PDF
    Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retrotransposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing B57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick–host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host ‘questing’, prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent

    Genome sequence of the tsetse fly (Glossina morsitans):Vector of African trypanosomiasis

    Get PDF
    Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.IS

    Genome analysis of a major urban malaria vector mosquito, Anopheles stephensi

    Get PDF

    Phylogenetic relationships of New Zealand cicadas

    No full text
    New Zealand cicadas, a group of nearly 40 species (some not yet described), are divided into 5 genera. They are endemic to New Zealand and to the surrounding “outer islands”: the Kermadec, Chatham, and Norfolk islands. Based on molecular sequence data from a variety of mitochondrial genes (COI, COII, 12S, 16S, ATPase6 and ATPase8) and a nuclear gene (EF1alpha), I examined (1) the phylogenetic relationships of the genera to each other and to closely related Australian and New Caledonian taxa, (2) the relationships of the “outer island” species to species on the New Zealand North and South Islands, (3) relationships within the most speciose genus, Kikihia. Two of the New Zealand genera (Amphipsalta and Notopsalta) were found to be derived from Australian taxa, while the other three genera (Kikihia, Maoricicada , and Rhodopsalta) had affinities with New Caledonian taxa. The timing of divergence between New Zealand, Australian, and New Caledonian taxa was estimated using a molecular clock. This divergence was estimated to have occurred within the last 12 million years. This result indicated that New Zealand must have been colonized from overseas via long distance dispersal. Long distance dispersal within the last 4.62 million years was also responsible for the colonization of the “outer islands” from New Zealand. Based on molecular sequence data two of these “outer island” cicadas, K. convicta and K. cutora exulis, were found to very closely related. This result questioned the taxonomy of the K. cutora subspecies group. The genus Kikihia was found to have evolved within the last 10 million years, with a species explosion 3–5 million years ago. The results of these phylogenetic analyses were compared with previously published hypotheses of New Zealand cicada relationships, and examined within the context of the well studied geological and climatological history of New Zealand.
    corecore