24 research outputs found

    Breeding to Optimize Agriculture in a Changing World

    Get PDF
    AbstractBreeding to Optimize Chinese Agriculture (OPTICHINA) was a three-year EU–China project launched in June of 2011. As designed, the project acted as a new strategic model to reinforce systematic cooperation on agricultural research between Europe and China. The OPTICHINA International Conference “Breeding to Optimize Agriculture in a Changing World” was held in Beijing, May 26–29, 2014. The conference included six thematic areas: (1) defining and protecting the yield potential of traits and genes; (2) high-throughput precision phenotyping in the field; (3) molecular technologies in modern breeding; (4) plant ideotype; (5) data analysis, data management, and bioinformatics; and (6) national challenges and opportunities for China. The 10 articles collected in this special issue represent key contributions and topics of this conference. This editorial provides a brief introduction to the OPTICHINA project, followed by the main scientific points of articles published in this special issue. Finally, outcomes from a brainstorming discussion at the end of the conference are summarized, representing the authors' opinions on trends in breeding for a changing world

    Rapid phenotyping of different maize varieties under drought stress by using thermal images

    Get PDF
    The development of maize genotypes with high yields under drought is of pivotal relevance for the International Maize and Wheat Improvement Centre (CIMMYT). Thermal images of the canopy of different 92 maize genotypes were acquired in the time interval between anthesis and blister stage with each picture containing five plots of different genotypes. Mean temperature differences of more than 2°C between different genotypes under water stress were then detected using thermal images. Genotypes better adapted to drought exhibiting lower temperatures. A canopy thermal image is a potential promising method to accelerate the screening process and thereby enhance phenotyping for drought adaptation in maize

    Selective Methods to Investigate Authenticity and Geographical Origin of Mediterranean Food Products

    Get PDF
    The Mediterranean diet is promoted as one of the healthiest and closely linked to socioecological practices, knowledge and traditions, promoting sustainable food production, and linking geographical origin with food quality and ecosystem services. Consumer adherence to this dietary pattern drives increased consumption of authentic “premium” foods, such as Iberian pig meat and dry-cured ham from Portugal and Spain, argan oil from Morocco, “Djebel” lamb from Tunisia and truffles from Italy and Slovenia, i.e., food products that respond to current ethical, environmental and socially sustainable demands. Geographical indication and appellation of origin can increase traditional food products competitiveness, but the high-value recognition of these products can also lead to economically motivated product adulteration. It is therefore imperative to protect the high added value of these unique food products by ensuring their quality, authenticity, provenance and sustainable production systems. In this review, we provide a critical evaluation of the analytical methods that are currently used for the determination of provenance and authenticity of these Mediterranean products as well as possible strategies for improving the throughput and affordability of the methods discussed.info:eu-repo/semantics/publishedVersio

    Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient

    Get PDF
    Although plant performance under elevated CO2 has been extensively studied in the past little is known about photosynthetic performance changing simultaneously CO2, water availability and temperature conditions. Moreover, despite of its relevancy in crop responsiveness to elevated CO2 conditions, plant level C balance is a topic that, comparatively, has received little attention. In order to test responsiveness of grapevine photosynthetic apparatus to predicted climate change conditions, grapevine (Vitis vinifera L. cv. Tempranillo) fruit-bearing cuttings were exposed to different CO2 (elevated, 700 ppm vs. ambient, ca. 400 ppm), temperature (ambient vs. elevated, ambient +4 °C) and irrigation levels (partial vs. full irrigation). Carbon balance was followed monitoring net photosynthesis (AN, C gain), respiration (RD) and photorespiration (RL) (C losses). Modification of environment 13C isotopic composition (ή13C) under elevated CO2 (from −10.30 to −24.93‰) enabled the further characterization of C partitioning into roots, cuttings, shoots, petioles, leaves, rachides and berries. Irrespective of irrigation level and temperature, exposure to elevated CO2 induced photosynthetic acclimation of plants. C/N imbalance reflected the inability of plants grown at 700 ppm CO2 to develop strong C sinks. Partitioning of labeled C to storage organs (main stem and roots) did not avoid accumulation of labeled photoassimilates in leaves, affecting negatively Rubisco carboxylation activity. The study also revealed that, after 20 days of treatment, no oxidative damage to chlorophylls or carotenoids was observed, suggesting a protective role of CO2 either at current or elevated temperatures against the adverse effect of water stress

    Exploring plant responses to abiotic stress by contrasting spectral signature changes

    Get PDF
    In this study, daily changes over a short period and diurnal progression of spectral reflectance at the leaf level were used to identify spring wheat genotypes (Triticum aestivum L.) susceptible to adverse conditions. Four genotypes were grown in pots experiments under semi-controlled conditions in Chile and Spain. Three treatments were applied: i) control (C), ii) water stress (WS), and iii) combined water and heat shock (WS+T). Spectral reflectance, gas exchange and chlorophyll fluorescence measurements were performed on flag leaves for three consecutive days at anthesis. High canopy temperature (HCT) genotypes showed less variability in their mean spectral reflectance signature and chlorophyll fluorescence, which was related to weaker responses to environmental fluctuations. While low canopy temperature (LCT) genotypes showed greater variability. The genotypes spectral signature changes, in accordance with environmental fluctuation, were associated with variations in their stomatal conductance under both stress conditions (WS and WS+T); LCT genotypes showed an anisohydric response compared that of HCT, which was isohydric. This approach could be used in breeding programs for screening a large number of genotypes through proximal or remote sensing tools and be a novel but simple way to identify groups of genotypes with contrasting performances

    Measuring the dynamic photosynthome

    Get PDF
    Background: Photosynthesis underpins plant productivity and yet is notoriously sensitive to small changes inenvironmental conditions, meaning that quantitation in nature across different time scales is not straightforward. The ‘dynamic’ changes in photosynthesis (i.e. the kinetics of the various reactions of photosynthesis in response to environmental shifts) are now known to be important in driving crop yield. Scope: It is known that photosynthesis does not respond in a timely manner, and even a small temporal “mismatch” between a change in the environment and the appropriate response of photosynthesis toward optimality can result in a fall in productivity. Yet the most commonly measured parameters are still made at steady state or a temporary steady state (including those for crop breeding purposes), meaning that new photosynthetic traits remain undiscovered. Conclusions: There is a great need to understand photosynthesis dynamics from a mechanistic and biological viewpoint especially when applied to the field of ‘phenomics’ which typically uses large genetically diverse populations of plants. Despite huge advances in measurement technology in recent years, it is still unclear whether we possess the capability of capturing and describing the physiologically relevant dynamic features of field photosynthesis in sufficient detail. Such traits are highly complex, hence we dub this the ‘photosynthome’. This review sets out the state of play and describes some approaches that could be made to address this challenge with reference to the relevant biological processes involved

    Estimating Wheat Grain Yield Using Sentinel-2 Imagery and Exploring Topographic Features and Rainfall Effects on Wheat Performance in Navarre, Spain

    No full text
    Reliable methods for estimating wheat grain yield before harvest could help improve farm management and, if applied on a regional level, also help identify spatial factors that influence yield. Regional grain yield can be estimated using conventional methods, but the typical process is complex and labor-intensive. Here we describe the development of a streamlined approach using publicly accessible agricultural data, field-level yield, and remote sensing data from Sentinel-2 satellite to estimate regional wheat grain yield. We validated our method on wheat croplands in Navarre in northern Spain, which features heterogeneous topography and rainfall. First, this study developed stepwise multilinear equations to estimate grain yield based on various vegetation indices, which were measured at various phenological stages in order to determine the optimal timings. Second, the most suitable model was used to estimate grain yield in wheat parcels mapped from Sentinel-2 satellite images. We used a supervised pixel-based random forest classification and the estimates were compared to government-published post-harvest yield statistics. When tested, the model achieved an R2 of 0.83 in predicting grain yield at field level. The wheat parcels were mapped with an accuracy close to 86% for both overall accuracy and compared to official statistics. Third, the validated model was used to explore potential relationships of the mapped per-parcel grain yield estimation with topographic features and rainfall by using geographically weighted regressions. Topographic features and rainfall together accounted for an average for 11 to 20% of the observed spatial variation in grain yield in Navarre. These results highlight the ability of our method for estimating wheat grain yield before harvest and determining spatial factors that influence yield at the regional scale

    Seed Coating with Thyme Essential Oil or Paraburkholderia phytofirmans PsJN Strain: Conferring Septoria Leaf Blotch Resistance and Promotion of Yield and Grain Isotopic Composition in Wheat

    No full text
    Septoria leaf blotch (SLB) is considered one of the most devastating diseases affecting global wheat production. Biostimulant application is among the modern approaches in plant protection to overcome the impact of SLB’s fungicide resistance. In this manner, the effect of coating seeds with thyme essential oil or Paraburkholderia phytofirmans PsJN strain on SLB severity and yield components (spikes/m2, straw yield (SY), grain yield (GY) and thousand kernel weight (TKW)) were assessed under field conditions for 3 years. The effect on physiological traits and nitrogen and carbon isotope composition (δ15Ngrain, δ13Cgrain) and nitrogen and carbon content (Ngrain, Cgrain) of grains was assessed in one year of study. The increasing SLB severity decreased all yield components, increased δ15Ngrain and Cgrain content and slightly decreased δ13Cgrain as the resulting effect of Zymoseptoria tritici inducing stomatal opening and leaf necrosis. Across the years, both treatments alleviated the SLB adverse impact by reducing SLB severity, increasing spikes/m2, SY, GY and TKW. Both treatments ameliorated grain quality by increasing Cgrain content and decreasing δ13Cgrain and δ15Ngrain. The difference between the performance of thyme oil or PsJN strain in terms of intensity and stability is discussed and considered to be linked to the different triggered systemic resistance and the associated amount of costs deriving from resource allocation towards defense processes
    corecore