217 research outputs found

    Beyond Philanthropy: Community Nature-based Enterprises as a Basis for Wildlife Conservation

    Get PDF
    This paper shows how communities can be vehicles for nature conservation through community engagement

    British Groundnut Scheme in East Africa: Labour government's dilemma

    Get PDF
    LD2668 .T4 1966 A637Master of Scienc

    The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles

    Get PDF
    The body masses of cats (Mammalia, Carnivora, Felidae) span a ~300‐fold range from the smallest to largest species. Despite this range, felid musculoskeletal anatomy remains remarkably conservative, including the maintenance of a crouched limb posture at unusually large sizes. The forelimbs in felids are important for body support and other aspects of locomotion, as well as climbing and prey capture, with the assistance of the vertebral (and hindlimb) muscles. Here, we examine the scaling of the anterior postcranial musculature across felids to assess scaling patterns between different species spanning the range of felid body sizes. The muscle architecture (lengths and masses of the muscle‐tendon unit components) for the forelimb, cervical and thoracic muscles was quantified to analyse how the muscles scale with body mass. Our results demonstrate that physiological cross‐sectional areas of the forelimb muscles scale positively with increasing body mass (i.e. becoming relatively larger). Many significantly allometric variables pertain to shoulder support, whereas the rest of the limb muscles become relatively weaker in larger felid species. However, when phylogenetic relationships were corrected for, most of these significant relationships disappeared, leaving no significantly allometric muscle metrics. The majority of cervical and thoracic muscle metrics are not significantly allometric, despite there being many allometric skeletal elements in these regions. When forelimb muscle data were considered in isolation or in combination with those of the vertebral muscles in principal components analyses and MANOVAs, there was no significant discrimination among species by either size or locomotory mode. Our results support the inference that larger felid species have relatively weaker anterior postcranial musculature compared with smaller species, due to an absence of significant positive allometry of forelimb or vertebral muscle architecture. This difference in strength is consistent with behavioural changes in larger felids, such as a reduction of maximal speed and other aspects of locomotor abilities

    The scaling of postcranial muscles in cats (Felidae) II: hindlimb and lumbosacral muscles

    Get PDF
    In quadrupeds the musculature of the hindlimbs is expected to be responsible for generating most of the propulsive locomotory forces, as well as contributing to body support by generating vertical forces. In supporting the body, postural changes from crouched to upright limbs are often associated with an increase of body mass in terrestrial tetrapods. However, felids do not change their crouched limb posture despite undergoing a 300-fold size increase between the smallest and largest extant species. Here, we test how changes in the muscle architecture (masses and lengths of components of the muscle-tendon units) of the hindlimbs and lumbosacral region are related to body mass, to assess whether there are muscular compensations for the maintenance of a crouched limb posture at larger body sizes. We use regression and principal component analyses to detect allometries in muscle architecture, with and without phylogenetic correction. Of the muscle lengths that scale allometrically, all scale with negative allometry (i.e. relative shortening with increasing body mass), whereas all tendon lengths scale isometrically. Only two muscles' belly masses and two tendons' masses scale with positive allometry (i.e. relatively more massive with increasing body mass). Of the muscles that scale allometrically for physiological cross-sectional area, all scale positively (i.e. relatively greater area with increasing body mass). These muscles are mostly linked to control of hip and thigh movements. When the architecture data are phylogenetically corrected, there are few significant results, and only the strongest signals remain. None of the vertebral muscles scaled significantly differently from isometry. Principal component analysis and manovas showed that neither body size nor locomotor mode separate the felid species in morphospace. Our results support the inference that, despite some positively allometric trends in muscle areas related to thigh movement, larger cats have relatively weaker hindlimb and lumbosacral muscles in general. This decrease in power may be reflected in relative decreases in running speeds and is consistent with prevailing evidence that behavioural changes may be the primary mode of compensation for a consistently crouched limb posture in larger cats

    Radiographs Reveal Exceptional Forelimb Strength in the Sabertooth Cat, Smilodon fatalis

    Get PDF
    Background: The sabertooth cat, Smilodon fatalis, was an enigmatic predator without a true living analog. Their elongate canine teeth were more vulnerable to fracture than those of modern felids, making it imperative for them to immobilize prey with their forelimbs when making a kill. As a result, their need for heavily muscled forelimbs likely exceeded that of modern felids and thus should be reflected in their skeletons. Previous studies on forelimb bones of S. fatalis found them to be relatively robust but did not quantify their ability to withstand loading. Methodology/Principal Findings: Using radiographs of the sabertooth cat, Smilodon fatalis, 28 extant felid species, and the larger, extinct American lion Panthera atrox, we measured cross-sectional properties of the humerus and femur to provide the first estimates of limb bone strength in bending and torsion. We found that the humeri of Smilodon were reinforced by cortical thickening to a greater degree than those observed in any living felid, or the much larger P. atrox. The femur of Smilodon also was thickened but not beyond the normal variation found in any other felid measured. Conclusions/Significance: Based on the cross-sectional properties of its humerus, we interpret that Smilodon was a powerful predator that differed from extant felids in its greater ability to subdue prey using the forelimbs. This enhanced forelimb strength was part of an adaptive complex driven by the need to minimize the struggles of prey in order to protec

    The Costs of Carnivory

    Get PDF
    Mammalian carnivores fall into two broad dietary groups: smaller carnivores (<20 kg) that feed on very small prey (invertebrates and small vertebrates) and larger carnivores (>20 kg) that specialize in feeding on large vertebrates. We develop a model that predicts the mass-related energy budgets and limits of carnivore size within these groups. We show that the transition from small to large prey can be predicted by the maximization of net energy gain; larger carnivores achieve a higher net gain rate by concentrating on large prey. However, because it requires more energy to pursue and subdue large prey, this leads to a 2-fold step increase in energy expenditure, as well as increased intake. Across all species, energy expenditure and intake both follow a three-fourths scaling with body mass. However, when each dietary group is considered individually they both display a shallower scaling. This suggests that carnivores at the upper limits of each group are constrained by intake and adopt energy conserving strategies to counter this. Given predictions of expenditure and estimates of intake, we predict a maximum carnivore mass of approximately a ton, consistent with the largest extinct species. Our approach provides a framework for understanding carnivore energetics, size, and extinction dynamics

    Feeding habits of extant and fossil canids as determined by their skull geometry

    Get PDF
    The canids belong to one of the most prominent families of mammalian carnivores. Feeding adaptations of extant species is well documented by field observations; however, we are still missing palaeoecological insights for many enigmatic fossil specimens. We employ geometric morphometrics to quantify skull size and shape in extant and fossil members of the Canini tribe, inclusive of jackals and wolf-like taxa. Skull data are tested to identify correlates of dietary adaptations in extant species for predicting adaptations in fossils. Main vectors of shape variation correlate with the relative skull-palatal length, the position of the upper carnassial tooth and the anterior tip of the secondary palate. Allometry occurs in the palatal shape but size explains only a small fraction (about 4%) of shape variance. Although we quantified only palatal and tooth shape for the inclusion of fragmentary fossils, discriminant function analysis successfully classify extant Canini in dietary groups (small, medium and large prey specialist) with 89% of accuracy. The discriminant functions provide insights into many enigmatic specimens such as Eucyon adoxus (=small prey), fossil jackal-like from Koobi Fora formation (=small prey) and the Plio-Pleistocene Old World canid guild (Canis etruscus, C. arnensis and Lycaon falconeri). Clearly, both skull size and shape are excellent predictors of feeding habits in Canini thus also provide information about fossil taxonomic affinities

    Could Direct Killing by Larger Dingoes Have Caused the Extinction of the Thylacine from Mainland Australia?

    Get PDF
    Invasive predators can impose strong selection pressure on species that evolved in their absence and drive species to extinction. Interactions between coexisting predators may be particularly strong, as larger predators frequently kill smaller predators and suppress their abundances. Until 3500 years ago the marsupial thylacine was Australia's largest predator. It became extinct from the mainland soon after the arrival of a morphologically convergent placental predator, the dingo, but persisted in the absence of dingoes on the island of Tasmania until the 20th century. As Tasmanian thylacines were larger than dingoes, it has been argued that dingoes were unlikely to have caused the extinction of mainland thylacines because larger predators are rarely killed by smaller predators. By comparing Holocene specimens from the same regions of mainland Australia, we show that dingoes were similarly sized to male thylacines but considerably larger than female thylacines. Female thylacines would have been vulnerable to killing by dingoes. Such killing could have depressed the reproductive output of thylacine populations. Our results support the hypothesis that direct killing by larger dingoes drove thylacines to extinction on mainland Australia. However, attributing the extinction of the thylacine to just one cause is problematic because the arrival of dingoes coincided with another the potential extinction driver, the intensification of the human economy

    A recipe for scavenging in vertebrates - the natural history of a behaviour

    Get PDF
    AK was funded by the Irish Research Council GOIP/2015/81, KH was funding by Science Foundation Ireland. T.G. acknowledges support from European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement number 311092 awarded to Martin D. Brazeau.Despite its prevalence, the importance of scavenging to carnivores is difficult to ascertain in modern day forms and impossible to study directly in extinct species. Yet, there are certain intrinsic and environmental features of a species that push it towards a scavenging lifestyle. These can be thought of as some of the principal parameters in optimal foraging theory namely, encounter rate and handling time. We use these components to highlight the morphologies and environments that would have been conducive to scavenging over geological time by focusing on the dominant vertebrate groups of the land, sea and air. The result is a synthesis on the natural history of scavenging. The features that make up our qualitative scale of scavenging can be applied to any given species and allow us to judge the likely importance of this foraging behaviour.PostprintPeer reviewe
    corecore