6 research outputs found

    Targeted LC–MS derivatization for aldehydes and carboxylic acids with a new derivatization agent 4-APEBA

    Get PDF
    Based on the template of a recently introduced derivatization reagent for aldehydes, 4-(2-(trimethylammonio)ethoxy)benzeneaminium dibromide (4-APC), a new derivatization agent was designed with additional features for the analysis and screening of biomarkers of lipid peroxidation. The new derivatization reagent, 4-(2-((4-bromophenethyl)dimethylammonio)ethoxy)benzenaminium dibromide (4-APEBA) contains a bromophenethyl group to incorporate an isotopic signature to the derivatives and to add additional fragmentation identifiers, collectively enhancing the abilities for detection and screening of unknown aldehydes. Derivatization can be achieved under mild conditions (pH 5.7, 10 °C). By changing the secondary reagent (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide instead of sodium cyanoborohydride), 4-APEBA is also applicable to the selective derivatization of carboxylic acids. Synthesis of the new label, exploration of the derivatization conditions, characterization of the fragmentation of the aldehyde and carboxylic acid derivatives in MS/MS, and preliminary applications of the labeling strategy for the analysis of aldehydes in urine and plasma are described

    A Comparison of the Solvation Properties of 2-Nitrophenyloctyl Ether, Nitrobenzene, andn-Octanol as Assessed by Ion Transfer Experiments

    Get PDF
    The lipophilicity of the anionic forms of drugs and model compounds was assessed by their transfer across (i) the water-2-nitrophenyloctyl ether (NPOE), (ii) the water-nitrobenzene (NB), and (iii) the water-noctanol interfaces by using the three-phase electrode technique. The lipophilicities, expressed in terms of logarithm of partition coefficients, range for the studied anions from -3.46 to 0.68 (log PA-,aq QNPOE) for NPOE, from -3.81 to 2.62 (log PA-,aq QNB ) for NB, and from -6.20 to -3.20 (log PA-,aq Qn-oct) for n-octanol. Although NPOE shares with nitrobenzene the aromatic part and with n-octanol the hydrophobic carbon chain, only very weak correlation was observed between the NPOE-based data with the n-octanol-based data, and the same is true for the correlation of the NB-based and n-octanol-based data. However, there is a strong and even linear correlation between the NPOE-based and the NB-based data

    Unique human immune signature of Ebola virus disease in Guinea.

    Get PDF
    Despite the magnitude of the Ebola virus disease (EVD) outbreak in West Africa, there is still a fundamental lack of knowledge about the pathophysiology of EVD. In particular, very little is known about human immune responses to Ebola virus. Here we evaluate the physiology of the human T cell immune response in EVD patients at the time of admission to the Ebola Treatment Center in Guinea, and longitudinally until discharge or death. Through the use of multiparametric flow cytometry established by the European Mobile Laboratory in the field, we identify an immune signature that is unique in EVD fatalities. Fatal EVD was characterized by a high percentage of CD4(+) and CD8(+) T cells expressing the inhibitory molecules CTLA-4 and PD-1, which correlated with elevated inflammatory markers and high virus load. Conversely, surviving individuals showed significantly lower expression of CTLA-4 and PD-1 as well as lower inflammation, despite comparable overall T cell activation. Concomitant with virus clearance, survivors mounted a robust Ebola-virus-specific T cell response. Our findings suggest that dysregulation of the T cell response is a key component of EVD pathophysiology

    Review article: experimental therapies in autoimmune hepatitis

    No full text
    BACKGROUND: Current therapeutic options for autoimmune hepatitis (AIH) are limited by adverse events associated with corticosteroids and thiopurines and the limited evidence base for second- and third-line treatment options. Furthermore, current treatment approaches require long-term exposure of patients to pharmacological agents. There have been significant advances in the understanding of the mechanisms underpinning autoimmunity and an expansion in the available therapeutic agents for suppressing autoimmune responses or potentially restoring self-tolerance. AIM: To review the mechanisms and evidence for experimental therapies that are being actively explored in the management of AIH. METHODS: We have reviewed the literature relating to a range of novel therapeutic immunomodulatory treatment strategies and drugs. RESULTS: Drugs which block B cell-activating factor of the tumour necrosis factor family (BAFF) and tumour necrosis factor α are currently in clinical trials for the treatment of AIH. Experimental therapies and technologies to increase immune tolerance, such as pre-implantation factor and regulatory T cell therapies, are undergoing development for application in autoimmune disorders. There is also evidence for targeting inflammatory pathways to control other autoimmune conditions, such as blockade of IL1 and IL6 and Janus-associated kinase (JAK) inhibitors. CONCLUSIONS: With the range of tools available to clinicians and patients increasing, it is likely that the therapeutic landscape of AIH will change over the coming years and treatment approaches offering lower corticosteroid use and aiming to restore immune self-tolerance should be sought

    Unique human immune signature of Ebola virus disease in Guinea

    No full text
    corecore