102 research outputs found

    Neural encoding of behaviourally relevant visual-motion information in the fly

    Get PDF
    Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha A-K. Neural encoding of behaviourally relevant visual-motion information in the fly. Trends in Neurosciences. 2002;25(2):96-102.Information processing in visual systems is constrained by the spatial and temporal characteristics of the sensory input and by the biophysical properties of the neuronal circuits. Hence, to understand how visual systems encode behaviourally relevant information, we need to know about both the computational capabilities of the nervous system and the natural conditions under which animals normally operate. By combining behavioural, neurophysiological and computational approaches, it is now possible in the fly to assess adaptations that process visual-motion information under the constraints of its natural input. It is concluded that neuronal operating ranges and coding strategies appear to be closely matched to the inputs the animal encounters under behaviourally relevant conditions

    Transient genome-wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade

    Get PDF
    Dynamic reprogramming of gene regulatory networks (GRNs) enables organisms to rapidly respond to environmental perturbation. However, the underlying transient interactions between transcription factors (TFs) and genome-wide targets typically elude biochemical detection. Here, we capture both stable and transient TF-target interactions genome-wide within minutes after controlled TF nuclear import using time-series chromatin immunoprecipitation (ChIP-seq) and/or DNA adenine methyltransferase identification (DamID-seq). The transient TF-target interactions captured uncover the early mode-of-action of NIN-LIKE PROTEIN 7 (NLP7), a master regulator of the nitrogen signaling pathway in plants. These transient NLP7 targets captured in root cells using temporal TF perturbation account for 50% of NLP7-regulated genes not detectably bound by NLP7 in planta. Rapid and transient NLP7 binding activates early nitrogen response TFs, which we validate to amplify the NLP7-initiated transcriptional cascade. Our approaches to capture transient TF-target interactions genome-wide can be applied to validate dynamic GRN models for any pathway or organism of interest. Conventional methods cannot reveal transient transcription factors (TFs) and targets interactions. Here, Alvarez et al. capture both stable and transient TF-target interactions by time-series ChIP-seq and/or DamID-seq in a cell-based TF perturbation system and show NLP7 as a master TF to initiate a rapid nitrogen-response cascade

    Characterization of the Nrt2.6 gene in arabidopsis thaliana: a link with plant response to biotic and abiotic stress

    Get PDF
    The high affinity nitrate transport system in Arabidopsis thaliana involves one gene and potentially seven genes from the NRT1 and NRT2 family, respectively. Among them, NRT2.1, NRT2.2, NRT2.4 and NRT2.7 proteins have been shown to transport nitrate and are localized on the plasmalemma or the tonoplast membranes. NRT2.1, NRT2.2 and NRT2.4 play a role in nitrate uptake from soil solution by root cells while NRT2.7 is responsible for nitrate loading in the seed vacuole. We have undertaken the functional characterization of a third member of the family, the NRT2.6 gene. NRT2.6 was weakly expressed in most plant organs and its expression was higher in vegetative organs than in reproductive organs. Contrary to other NRT2 members, NRT2.6 expression was not induced by limiting but rather by high nitrogen levels, and no nitrate-related phenotype was found in the nrt2.6-1 mutant. Consistently, the over-expression of the gene failed to complement the nitrate uptake defect of an nrt2.1-nrt2.2 double mutant. The NRT2.6 expression is induced after inoculation of Arabidopsis thaliana by the phytopathogenic bacterium Erwinia amylovora. Interestingly, plants with a decreased NRT2.6 expression showed a lower tolerance to pathogen attack. A correlation was found between NRT2.6 expression and ROS species accumulation in response to infection by E. amylovora and treatment with the redox-active herbicide methyl viologen, suggesting a probable link between NRT2.6 activity and the production of ROS in response to biotic and abiotic stress.Julie Dechorgnat, Oriane Patrit, Anne Krapp, Mathilde Fagard and Françoise Daniel-Vedel

    Harnessing symbiotic plant-fungus interactions to unleash hidden forces from extreme plant ecosystems

    Get PDF
    13 Pág.Global climate change is arguably one of the biggest threats of modern times and has already led to a wide range of impacts on the environment, economy, and society. Owing to past emissions and climate system inertia, global climate change is predicted to continue for decades even if anthropogenic greenhouse gas emissions were to stop immediately. In many regions, such as central Europe and the Mediterranean region, the temperature is likely to rise by 2-5 °C and annual precipitation is predicted to decrease. Expected heat and drought periods followed by floods, and unpredictable growing seasons, are predicted to have detrimental effects on agricultural production systems, causing immense economic losses and food supply problems. To mitigate the risks of climate change, agricultural innovations counteracting these effects need to be embraced and accelerated. To achieve maximum improvement, the required agricultural innovations should not focus only on crops but rather pursue a holistic approach including the entire ecosystem. Over millions of years, plants have evolved in close association with other organisms, particularly soil microbes that have shaped their evolution and contemporary ecology. Many studies have already highlighted beneficial interactions among plants and the communities of microorganisms with which they coexist. Questions arising from these discoveries are whether it will be possible to decipher a common molecular pattern and the underlying biochemical framework of interspecies communication, and whether such knowledge can be used to improve agricultural performance under environmental stress conditions. In this review, we summarize the current knowledge of plant interactions with fungal endosymbionts found in extreme ecosystems. Special attention will be paid to the interaction of plants with the symbiotic root-colonizing endophytic fungus Serendipita indica, which has been developed as a model system for beneficial plant-fungus interactions.The authors are grateful for financial assistance received from the collaborative IPSC research project realized in the framework of the EIG CONCERT-Japan joint call on Food Crops and Biomass Production Technologies and the related national funding agencies: grant PCIN-2016–037 from the Ministry of Economy and Competitiveness (MINECO), Spain, to SP and JVC; grants 01DR17007A and 01DR17007B from the Federal Ministry of Education and Research (BMBF), Germany, to JL-M and RO, respectively; grant JPMJSC16C3 from the Japan Science and Technology Agency (JST) to HS; and grant EIG_JC1JAPAN-045 from the Centre National de la Recherche Scientifique (CNRS), France, to AK. CGG was supported by the Severo Ochoa Program for Centers of Excellence in R&D from the Agencia Estatal de Investigación, Spain, grant SEV-2016-0672 (2017–2021) to the Centro de Biotecnología y Genómica de Plantas.With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditationPeer reviewe

    Relating Neuronal to Behavioral Performance: Variability of Optomotor Responses in the Blowfly

    Get PDF
    Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly's (Calliphora vicina) visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system

    Considerations on Genre and Gender Conventions in Translating from Old English

    Get PDF
    The Old English poem The Wife's Lament is an extremely conventional and, at the same time, original text. It portrays a female character suffering for the absence of her loved one, through the framework of the so-called 'elegiac' style and a mainly heroic vocabulary. The traditional exile theme is, thus, interwoven with the uncommon motif of love sickness. While this appraisal of the poem is the most widely accepted one, disagreement still remains about the translation of some keywords, strictly related to the exile theme, such as sīþ or wræcsīþ. The aim of this paper is to examine diverging readings and glosses of the above mentioned 'exilic/elegiac' keywords, and to show that an accurate translation should not neglect a thorough appraisal of the text in its complexity and the association with related literary patterns and imagery in other poetic and prose texts

    Association between convalescent plasma treatment and mortality in COVID-19: a collaborative systematic review and meta-analysis of randomized clinical trials.

    Get PDF
    Funder: laura and john arnold foundationBACKGROUND: Convalescent plasma has been widely used to treat COVID-19 and is under investigation in numerous randomized clinical trials, but results are publicly available only for a small number of trials. The objective of this study was to assess the benefits of convalescent plasma treatment compared to placebo or no treatment and all-cause mortality in patients with COVID-19, using data from all available randomized clinical trials, including unpublished and ongoing trials (Open Science Framework, https://doi.org/10.17605/OSF.IO/GEHFX ). METHODS: In this collaborative systematic review and meta-analysis, clinical trial registries (ClinicalTrials.gov, WHO International Clinical Trials Registry Platform), the Cochrane COVID-19 register, the LOVE database, and PubMed were searched until April 8, 2021. Investigators of trials registered by March 1, 2021, without published results were contacted via email. Eligible were ongoing, discontinued and completed randomized clinical trials that compared convalescent plasma with placebo or no treatment in COVID-19 patients, regardless of setting or treatment schedule. Aggregated mortality data were extracted from publications or provided by investigators of unpublished trials and combined using the Hartung-Knapp-Sidik-Jonkman random effects model. We investigated the contribution of unpublished trials to the overall evidence. RESULTS: A total of 16,477 patients were included in 33 trials (20 unpublished with 3190 patients, 13 published with 13,287 patients). 32 trials enrolled only hospitalized patients (including 3 with only intensive care unit patients). Risk of bias was low for 29/33 trials. Of 8495 patients who received convalescent plasma, 1997 died (23%), and of 7982 control patients, 1952 died (24%). The combined risk ratio for all-cause mortality was 0.97 (95% confidence interval: 0.92; 1.02) with between-study heterogeneity not beyond chance (I2 = 0%). The RECOVERY trial had 69.8% and the unpublished evidence 25.3% of the weight in the meta-analysis. CONCLUSIONS: Convalescent plasma treatment of patients with COVID-19 did not reduce all-cause mortality. These results provide strong evidence that convalescent plasma treatment for patients with COVID-19 should not be used outside of randomized trials. Evidence synthesis from collaborations among trial investigators can inform both evidence generation and evidence application in patient care
    • …
    corecore